
Package: seewave (via r-universe)
September 17, 2024

Type Package

Title Sound Analysis and Synthesis

Version 2.2.3

Date 2023-10-15

Author Jerome Sueur [aut, cre], Thierry Aubin [aut], Caroline Simonis
[aut], Laurent Lellouch [ctr], Pierre Aumond [ctr], Adèle de
Baudouin [ctr], Ethan C. Brown [ctr], Guillaume Corbeau [ctr],
Marion Depraetere [ctr], Camille Desjonquères [ctr], François
Fabianek [ctr], Amandine Gasc [ctr], Sylvain Haupert [ctr],
Eric Kasten [ctr], Jonathan Lees [ctr], Jean Marchal [ctr],
Andre Mikulec [ctr], Sandrine Pavoine [ctr], David Pinaud
[ctr], Alicia Stotz [ctr], Luis J. Villanueva-Rivera [ctr], Zev
Ross [ctr], Carl G. Witthoft [ctr], Hristo Zhivomirov [ctr]

Maintainer Jerome Sueur <sueur@mnhn.fr>

Encoding UTF-8

SystemRequirements LIBSNDFILE

Imports graphics, grDevices, stats, utils, tuneR, methods

Suggests audio, circlize, FactoMineR, fftw, ggplot2, rgl, rpanel,
phonTools, signal

ZipData no

Description Functions for analysing, manipulating, displaying, editing
and synthesizing time waves (particularly sound). This package
processes time analysis (oscillograms and envelopes), spectral
content, resonance quality factor, entropy, cross correlation
and autocorrelation, zero-crossing, dominant frequency,
analytic signal, frequency coherence, 2D and 3D spectrograms
and many other analyses. See Sueur et al. (2008)
<doi:10.1080/09524622.2008.9753600> and Sueur (2018)
<doi:10.1007/978-3-319-77647-7>.

License GPL (>= 2)

URL https://rug.mnhn.fr/seewave/

NeedsCompilation no

1

https://doi.org/10.1080/09524622.2008.9753600
https://doi.org/10.1007/978-3-319-77647-7
https://rug.mnhn.fr/seewave/

2 Contents

Date/Publication 2023-10-19 09:40:02 UTC

Repository https://jeromeecoac.r-universe.dev

RemoteUrl https://github.com/cran/seewave

RemoteRef HEAD

RemoteSha ff6206f522a1232386be097042d0ceac2b0ce4a4

Contents
ACI . 5
acoustat . 6
addsilw . 9
afilter . 10
akamatsu . 11
ama . 13
AR . 14
attenuation . 16
audiomoth . 17
audiomoth.rename . 19
autoc . 20
beep . 21
bwfilter . 22
ccoh . 23
ceps . 26
cepstro . 28
coh . 30
combfilter . 31
convSPL . 33
corenv . 34
corspec . 36
covspectro . 38
crest . 40
csh . 41
cutspec . 43
cutw . 44
dBscale . 45
dBweight . 47
deletew . 48
dfreq . 50
diffcumspec . 51
diffenv . 53
diffspec . 55
diffwave . 57
discrets . 59
drawenv . 60
drawfilter . 61
duration . 63

Contents 3

dynoscillo . 64
dynspec . 65
dynspectro . 67
echo . 70
env . 71
export . 73
fadew . 74
fbands . 75
fdoppler . 77
ffilter . 79
field . 80
fir . 82
fma . 83
fpeaks . 85
ftwindow . 87
fund . 89
gammatone . 90
ggspectro . 92
H . 94
hilbert . 95
ifreq . 96
istft . 98
itakura.dist . 100
kl.dist . 101
ks.dist . 102
lfs . 104
listen . 106
localpeaks . 107
logspec.dist . 108
lts . 110
M . 112
meandB . 113
meanspec . 114
mel . 116
melfilterbank . 118
micsens . 119
moredB . 120
mutew . 121
NDSI . 122
noisew . 123
notefreq . 124
octaves . 125
orni . 126
oscillo . 127
oscilloEQ . 130
oscilloST . 131
pastew . 133
peewit . 135

4 Contents

pellucens . 135
phaseplot . 136
phaseplot2 . 137
playlist . 139
preemphasis . 140
pulsew . 141
Q . 142
read.audacity . 144
repw . 145
resamp . 146
revw . 147
rmam . 148
rmnoise . 150
rmoffset . 151
rms . 152
roughness . 153
rugo . 154
savewav . 155
SAX . 156
scd . 158
sddB . 160
seedata . 161
seewave . 162
setenv . 163
sfm . 165
sh . 166
sheep . 168
simspec . 169
smoothw . 171
songmeter . 172
songmeterdiag . 174
soundscapespec . 176
sox . 178
spec . 179
specflux . 182
specprop . 184
spectro . 186
spectro3D . 190
squarefilter . 193
symba . 194
synth . 196
synth2 . 199
TFSD . 200
th . 202
tico . 204
timelapse . 204
timer . 206
TKEO . 207

ACI 5

wasp . 209
wav2dBSPL . 211
wav2flac . 212
wav2leq . 214
wf . 215
write.audacity . 217
zapsilw . 218
zc . 219
zcr . 221

Index 223

ACI Acoustic Complexity Index

Description

This function computes the Acoustic Complexity Index (ACI) as described in Pieretti et al. (2011)

Usage

ACI(wave, f, channel = 1, wl = 512, ovlp = 0, wn = "hamming", flim = NULL, nbwindows = 1)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl window length for the analysis (even number of points) (by default = 512).

ovlp overlap between two successive windows (in %).

wn window name, see ftwindow (by default "hanning").

flim a numeric vector of length 2 to select a frequency band (in kHz).

nbwindows a numeric vector of length 1 specifying the number of windows (by default 1, ie
a single window including the complete wave object.

Details

The function computes first a short-term Fourier transform and then the ACI index.
The function returns only the ACI total, ACI tot in Pieretti et al. (2010).
See the references for details on computation.

Value

A vector of length 1 returning the ACI total.

6 acoustat

Note

Values returned were checked with the results provided by the add-on Soundscapemeter for the
software Wavesurfer.

Author(s)

Laurent Lellouch, improved by Amandine Gasc and Morgane Papin

References

Pieretti N, Farina A, Morri FD (2011) A new methodology to infer the singing activity of an avian
community: the Acoustic Complexity Index (ACI). Ecological Indicators, 11, 868-873.
Farina A, Pieretti N, Piccioli L (2011) The soundscape methodology for long-term bird monitoring:
a Mediterranean Europe case-study. Ecological Informatics, 6, 354-363.

See Also

spectro, specflux

Examples

data(tico)
ACI(tico)
dividing the sound sample into 4 windows of equal duration
ACI(tico, nbwindows=4)
selection of a frequency band
ACI(tico, flim=c(2,6))

acoustat Statistics on time and frequency STFT contours

Description

This function returns statistics based on STFT time and frequency contours.

Usage

acoustat(wave, f, channel = 1, wl = 512, ovlp = 0, wn = "hanning",
tlim = NULL, flim = NULL,
aggregate = sum, fraction = 90,
plot = TRUE, type = "l", ...)

acoustat 7

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl window length for the analysis (even number of points) (by default = 512).

ovlp overlap between two successive windows (in %).

wn window name, see ftwindow (by default "hanning").

tlim modifications of the time limits of the analysis (in s).

flim modifications of the frequency limits of the analysis (in kHz).

aggregate a character vector of length 1 specifying the function to be applied on the rows
(time) and columns (frequency) of the STFT matrix. By default set to sum.

fraction a numeric vector of length 1, specifying a particular fraction of the contours
amplitude to be captured by the initial and terminal percentile values (in %).
See details.

plot a logical, if TRUE a two-frame plot is returned with the time and frequency con-
tours and percentiles displayed.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot graphical parameters.

Details

The principle of acoustat is as follows:

1. Compute the short-term Fourier transform (STFT) with usual parameters (wl for window
length, ovlp for overlap of successive windows, and wn for the name of window shape).

2. This results in a time * frequency matrix.

3. Compute an aggregation function (specified with the argument aggregate set by default to
sum) accross rows and columns of time * frequency matrix.)

4. This results in two components: (i) the time contour, and (ii) the frequency contour.

5. Each contour is considered as a probability mass function (PMF) and transformed into a cu-
mulated distribution function (CDF).

6. Measures are extracted from each CDF: median (M), initial percentile (P1) value, terminal
percentile (P2) value, interpercentile range (IPR). P1, P2 and IPR are defined using a fraction
parameter (fraction) that sets the percent of the contour amplitude to be captured by the
initial and terminal percentile values. A fraction of 50% would result in the familiar quartiles
and interquartile range. An energy fraction of 80% would return the 10th and 90th percentile
values, and the width of the range in between.

8 acoustat

Value

The function returns a list with 10 items:

time.contour the time contour as a two-column matrix, the first colum being time (s) and the
second colum being the amplitude probability mass function (no scale).

freq.contour the frequency contour as a two-column matrix, the first colum being frequency
(kHz) and the second colum being the amplitude probability mass function (no
scale).

time.P1 the time initial percentile

time.M the time median

time.P2 the time terminal percentile

time.IPR the time interpercentile range

freq.P1 the frequency initial percentile

freq.M the frequency median

freq.P2 the frequency terminal percentile

freq.IPR the frequency interpercentile range

Note

acoustat was originally developped in Matlab language by Kurt Fristrup and XXXX Watkins
(1992) .
The R function was kindly checked by Kurt Fristrup.

Author(s)

Jerome Sueur

References

Fristrup, K. M. and Watkins, W. A. 1992. Characterizing acoustic features of marine animal sounds.
Woods Hole Oceanographic Institution Technical Report WHOI-92-04.

See Also

meanspec, specprop

Examples

data(tico)
note <- cutw(tico, from=0.5, to=0.9, output="Wave")
default setting
acoustat(note)
change the percentile fraction
acoustat(note, fraction=50)
change the STFT parameters
acoustat(note, wl=1024, ovlp=80)
change the function to compute the aggregate contours

addsilw 9

standard deviation instead of sum
acoustat(note, aggregate=sd)
direct time and frequency selection
acoustat(tico, tlim=c(0.5,0.9), flim=c(3,6))
some useless graphical changes
acoustat(note, type="o", col="blue")

addsilw Add or insert a silence section

Description

Add or insert a silence section to a time wave.

Usage

addsilw(wave, f, channel = 1, at = "end", choose = FALSE, d = NULL,
plot = FALSE, output = "matrix", ...)

Arguments

wave an R object.
f sampling frequency of wave (in Hz). Does not need to be specified if embedded

in wave.
channel channel of the R object, by default left channel (1).
at position where to add the silence section (in s). Can be also specified as "start",

"middle" or "end".
choose logical, if TRUE the point where silence will be added into wave2 (=at) can be

graphically chosen with a cursor.
d duration of the silence section to add (in s).
plot logical, if TRUE returns an oscillographic plot of wave with the new silence sec-

tion (by default TRUE).
output character string, the class of the object to return, either "matrix", "Wave",

"Sample", "audioSample" or "ts".
... other oscillo graphical parameters.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

oscillo, cutw,deletew, fadew,pastew, mutew,revw, zapsilw

10 afilter

afilter Amplitude filter

Description

This function deletes all signal which amplitude is below a selected threshold.

Usage

afilter(wave, f, channel = 1, threshold = 5, plot = TRUE,
listen = FALSE, output = "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

threshold amplitude threshold (in %).

plot logical, if TRUE plots the new oscillogram (by default TRUE).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

Details

The threshold value is in % relative to the maximal value of wave. Signal inferior to this value is
clipped.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Note

This function is used as an argument (threshold) in the following functions: autoc, csh, dfreq,
timer and zc.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

akamatsu 11

See Also

oscillo

Examples

data(orni)
op<-par(mfrow=c(2,1))
afilter(orni,f=22050)
title(main = "threshold level = 5")
afilter(orni,f=22050,threshold=0.5,colwave="blue")
title(main = "threshold level = 0.5")
par(op)

akamatsu Water tank minimum resonant and cutoff frequencies

Description

This function computes the resonant and cutoff frequencies when recording in a given aquarium
according to the criteria explained in Akamatsu et al. (2002)

Usage

akamatsu(Lx, Ly, Lz, mode = c(1,1,1),
c = 148000, plot = FALSE, xlab = "Frequency (kHz)",
ylab = "Attenuation distance (cm)", ...)

Arguments

Lx watertank length (in cm).

Ly watertank width (in cm).

Lz watertank height (in cm).

mode mode, see details.

c sound velocity in cm/s (by default 148000 cm/s in water).

plot logical, if TRUE plots the attenuation distance in function of frequency.

xlab title of the x axis if plot is TRUE.

ylab title of the y axis if plot is TRUE.

... other plot graphical parameters.

12 akamatsu

Details

From Akamatsu et al. (2002):

1. Resonant frequency

The calculated resonant frequencies of a rectangular glass tank with the dimension of Lx , Ly ,
and Lz (in centimeters) can be described by the following equation:

frectangular
lmn =

c

2
×

√(
l

Lx

)2

+

(
m

Ly

)2

+

(
n

Lz

)2

where c is the sound velocity (cm/s) and each l, m, n reprents an integer, and the combination of
these paramameters designates the ’mode number’. The mode (1, 1, 1) represents the resonance
wave of minimum frequency. The mode (2, 1, 1) represents one of the higher order of resonant
component and has additional node of the soundpressure level at the middle of the X axis, i.e.,
Lx/2.

2. Cutoff frequency

The cutoff frequency can be calculated as follows:

frectangular
cutoff =

c

2
×

√(
1

Ly

)2

+

(
1

Lz

)2

3. Attenuation distance

The theoretical attenuation distance D can be expressed in function of the cutoff frequency and
the projected frequency following:

Drectangular(f) = 2× log10 ×
c

4πfrectangular
cutoff

× 1√
1−

(
f

frectangular
cutoff

)2

Value

A list of two items:

res Resonant frequency (in Hz). See Details

cut Cut frequency (in Hz). See Details

Author(s)

Camille Desjonqueres

ama 13

References

Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Emprical refinements applicable to the
recording of fish sounds in small tanks. Journal of the Acoustical Society of America, 112, 3073-
3082.

Examples

akamatsu(60, 30, 40)

ama Amplitude modulation analysis of a time wave

Description

This function computes the Fourier analysis of a time wave envelope. This allows to detect period-
icity, in particular those generated by amplitude modulations.

Usage

ama(wave, f, channel = 1, envt = "hil", wl = 512, plot = TRUE, type = "l", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

envt the type of envelope to be used: either "abs" for absolute amplitude envelope or
"hil" for Hilbert amplitude envelope.

wl length of the window for the analysis (even number of points, by default = 512).

plot logical, if TRUE the spectrum of the envelope (by default TRUE).

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other meanspec parameters.

Details

This function is based on env and meanspec.
The envelope of wave is first computed and the spectrum of this envelope is then processed. All env
and meanspec arguments can be set up. Be sure to set up wl large enough if you want to detect low
amplitude modulation periodicity.

14 AR

Value

If plot is FALSE, ama returns a numeric vector corresponding to the computed spectrum. If peaks
is not NULL, ama returns a list with two elements:

spec the spectrum computed

peaks the peaks values (in kHz).

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

env, fma, meanspec

Examples

data(orni)
detection of the main amplitude modulation in a cicada song:
one with a 0.258 kHz frequency (due to pulses in the echemes)
one with a 2.369 kHz frequency (fundamental frequency)
ama(orni,f=22050,wl=1024)
these amplitude modulations can be identify with a cursor:
ama(orni,f=22050,wl=1024,identify=TRUE)

AR Acoustic Richness index

Description

This function computes the Acoustic Richness index based on M and Ht indices

Usage

AR(..., datatype = "objects", envt = "hil",
msmooth = NULL, ksmooth = NULL, ssmooth = NULL,
pattern = "[wav]$|[WAV]$|[mp3]$")

Arguments

... Wave, WaveMC, audioSample objects if datatype="objects", or a path as a
character string to a directory including .wav and/or .mp3 files if datatype="files".

datatype A character string to specify if inputs are either R objects (datatype="objects",
default) or files (datatype="files").

envt the type of envelope to be returned: either "abs" for absolute amplitude enve-
lope or "hil" for Hilbert (default) amplitude envelope. See env.

msmooth mean smooth. See env.

AR 15

ksmooth kernel smooth via kernel. See env.

ssmooth sum smooth. See env.

pattern an optional regular expression. Only file names which match the regular expres-
sion will be returned when datatype="files". By default .wav or .mp3 files.
See dir.

Details

AR is ranked index based on the rank of the M and Ht indices obtained with the functions M and th
respectively following:

AR =
rank(M)× rank(Ht)

n2

with
0 ≤ AR ≤ 1

Value

A data.frame with three columns (M, Ht, AR) and n columns, with n the number of objects
(respectively files) used as input.

Note

As a ranked index, the results returned by AR strongly depends with the set of objects (respectively
files) used as input. Comparaison between different data sets may be spurious. Computing AR on
a set of a single object does not make any sense but is allowed.

Author(s)

Jerome Sueur and Marion Depraetere

References

Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur J (2012) Monitoring animal diversity
using acoustic indices: implementation in a temperate woodland. Ecological Indicators, 13, 46-54.

See Also

M, th, env

Examples

input as R objects
data(orni)
data(tico)
AR(orni, tico)
give names to objects if you wish to have them as row names of the returned data.frame
AR(orni=orni, tico=tico)
input as files stored in the working directory
file names will be used as row names of the returned data.frame
Not run:

16 attenuation

require(tuneR)
AR(getwd(), datatype="files")

End(Not run)

attenuation Generate sound intensity attenuation data

Description

This function generates dB data following theoretical spherical attenuation of sound.

Usage

attenuation(lref, dref = 1, dstop, n, plot = TRUE,
xlab = "Distance (m)", ylab = "dB", type = "l", ...)

Arguments

lref reference intensity or pressure level (in dB).

dref reference distance corresponding to lref (in m.) (by default = 1).

dstop maximal distance of propagation (in m.).

n number of points generated between dref and dstop.

plot logical, if TRUE plots attenuation against distance of propagation (by default
TRUE).

xlab title of the x axis.

ylab title of the y axis.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot graphical parameters.

Value

If plot is FALSE return a numeric vector with the data generated.

Note

Sound attenuation in a free, unbounded medium behaves in accordance with the inverse square
law. attenuation generates data following this rule from a reference point where sound intensity
level (SIL) or sound pressure level (SPL) is known. Such theoretical data can be compared with
experimental data collected in a real environment.

Author(s)

Jerome Sueur

audiomoth 17

References

Hartmann, W. M. 1998 Signals, sound and sensation. New York: Springer.

See Also

convSPL, moredB

Examples

theoretical attenuation up to 150 m of a 100 dB/1m sound source
attenuation(lref=100, dref=1, dstop=150, n=200)

audiomoth Reading and interpreting Audiomoth file name

Description

This function reads and decomposes the files names generated by an Audiomoth device, audio digal
recorders produced by the society Open Acoustic Devices.

Usage

audiomoth(x, tz = "")

Arguments

x a character vector with .wav file names.

tz a character vector defining a time zone specification. See as.POSIXct

Details

The digital recorder Audiomoth produced by Open Acoustic Devices (https://www.openacousticdevices.
info/) generates .wav files which names contains information about the time of recording. The in-
formation is encoded in hexadecimal (e.g. "5E9089F0"). The function audiomoth decodes this
information so that time of recording can be retrieved in numeric or time format.

Value

The function returns a data.frame with the following columns:

year year of recording, numeric

month month of recording, numeric

day day of recording, numeric

hour hour of recording, numeric

min minute of recording, numeric

sec second of recording, numeric

time time in POSIX format

https://www.openacousticdevices.info/
https://www.openacousticdevices.info/

18 audiomoth

Note

For the time zone see the 607 time zone names stored in OlsonNames.
The file names of Audiomoth may change with time. There is no guarantee that the function will
be updated on time.

Author(s)

Jerome Sueur

References

See Open Acoustic Devices website for details regarding the Audiomoth: https://www.openacousticdevices.
info/.

See Also

audiomoth.rename, as.POSIXct, OlsonNames, songmeter

Examples

HEXADECIMAL EXAMPLES (OLD FORMAT)
recording done on Friday 10 April 2020 16:54:44 UTC
computer time zone (local time, Europe, Paris for the test)
audiomoth("5E90A4D4.WAV")
UTC
audiomoth("5E90A4D4.WAV", tz="UTC")
GMT (= UTC as UTC and GMT are synonyms)
audiomoth("5E90A4D4.WAV", tz="GMT")
UTC -2
audiomoth("5E90A4D4.WAV", tz="Etc/GMT-2")
in Asia, Japan
audiomoth("5E90A4D4.WAV", tz="Japan")
in South-America, Cayenne
audiomoth("5E90A4D4.WAV", tz="America/Cayenne")
several files
filenames <- c("5E914ED0.WAV", "5E915128.WAV",
"5E915380.WAV", "5E9155D8.WAV", "5E915830.WAV",
"5E915A88.WAV", "5E915CE0.WAV", "5E915F38.WAV",
"5E916190.WAV", "5E9163E8.WAV")
audiomoth(filenames)
YYYYMMDD_HHMMSS.WAV FORMAT (ACTUAL FORMAT)
single file
audiomoth("20230715_150000.wav")
several files
filenames <- c("20230715_150000.wav", "20230715_151500.wav",
"20230715_153000.wav", "20230715_154500.wav")
audiomoth(filenames)

https://www.openacousticdevices.info/
https://www.openacousticdevices.info/

audiomoth.rename 19

audiomoth.rename Rename audiomoth files in a readable format

Description

This function renames or copies files created with an Audiomoth device in a readable format in-
cluding the data and time of recording.

Usage

audiomoth.rename(dir, overwrite = FALSE, tz = "", prefix = "")

Arguments

dir a character vector, path to directory where the .WAV files are stored.

overwrite a logical, to specify if the files should be renamed or copied, if TRUE the files are
copied, if FALSE the files are renamed.

tz a character vector defining a time zone specification. See as.POSIXct

prefix a charcter vector for a prefix name to be added at the beginning of the file name.

Details

The format of the new file names follows the format of the SongMeter SM2/SM4 deveices: PREFIX_YYYYMMDD_HHMMSS.wav.

Value

1 logical vector indicating which operation succeeded for each of the files attempted.

Note

Be careful if you overwrite the files.

Author(s)

Jerome Sueur

See Also

audiomoth, songmeter

20 autoc

autoc Short-term autocorrelation of a time wave

Description

This function returns the fundamental frequency of a harmonic time wave. This is achieved by
computing a correlation of the signal with itself after a time delay.

Usage

autoc(wave, f, channel = 1, wl = 512, fmin, fmax, threshold = NULL, plot = TRUE,
xlab = "Time (s)", ylab = "Frequency (kHz)", ylim = c(0, f/2000), pb =
FALSE, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl length of the window for the analysis (even number of points, by default = 512).

fmin the minimum frequency to detect (in Hz). See details.

fmax the maximum frequency to detect (in Hz). See details

threshold amplitude threshold for signal detection (in %).

plot logical, if TRUE plots the fundamental frequency against time (by default TRUE).

xlab title of the x-axis.

ylab title of the y-axis.

ylim the range of y values.

pb if TRUE returns a text progress bar in the console.

... other plot graphical parameters.

Details

’fmin’ and ’fmax’ can help by reducing computing time but can also produce less accurate results.

Value

When plot is FALSE, autoc returns a two-column matrix, the first column corresponding to time in
seconds (x-axis) and the second column corresponding to to fundamental frequency in kHz (y-axis).
NA corresponds to pause sections in wave (see threshold).

Author(s)

Jerome Sueur <sueur@mnhn.fr> and Thierry Aubin <thierry.aubin@u-psud.fr>

beep 21

References

Hopp, S. L., Owren, M. J. and Evans, C. S. (Eds) 1998. Animal acoustic communication. Springer,
Berlin, Heidelberg.

See Also

ceps, acf

Examples

data(sheep)
fundamental frequency of a sheep
res <- autoc(sheep, f=8000, threshold=5, fmin=100, fmax=700, plot=FALSE)
spectro(sheep, f=8000, ovlp=75, scale=FALSE)
points(res, pch=20)
legend(0.5, 3.6, "Fundamental frequency", pch=20, bty=0, cex=0.7)

beep Beep sound

Description

Generate a simple beep to be used as an alert, for instance at the end of a loop of when ending up a
long script.

Usage

beep(d = 0.5, f = 8000, cf = 1000)

Arguments

d duration (in s)

f sampling frequency (in Hz)

cf carrier frequency (in Hz)

Value

Nothing returned, a pure tone sound is played back. The default duration is 0.5 s and the default
frequency is 1000 Hz

Note

The function uses listen of seewave which calls play of tuneR. You might need to set up your
sound player with setWavPlayer of tuneR.

Author(s)

Jerome Sueur

22 bwfilter

Examples

Not run:
default settings
beep()
change the duration and the frequency
beep(d=1, cf=880)

End(Not run)

bwfilter Butterworth frequency filter

Description

This function is a Butterworth frequency filter that filters out a selected frequency section of of a
time wave (low-pass, high-pass, low-stop, high-stop, bandpass or bandstop frequency filter).

Usage

bwfilter(wave, f, channel = 1, n = 1, from = NULL, to = NULL,
bandpass = TRUE, listen = FALSE, output = "matrix")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

n Order of the filter. See details.

from start frequency (in Hz) where to apply the filter.

to end frequency (in Hz) where to apply the filter.

bandpass if TRUE a band-pass filter is applied between from and to, if not NULL a band-stop
filter is applied between from and to (by default NULL).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

Details

The order of the filter determines the value of the roll-off value, that is the dB decrease per octave
of the transfer function. A filter of order n will have a transfer function with a roll-off value of - n*6
dB.

Value

A new wave is returned. The class of the returned object is set with the argument output.

ccoh 23

Note

This function mainly uses the functions filter() and filtfilt() from the package signal

Author(s)

Jerome Sueur, functions filter() and filtfilt() from the package signal.

References

Stoddard, P. K. (1998). Application of filters in bioacoustics. In: Hopp, S. L., Owren, M. J. and
Evans, C. S. (Eds), Animal acoustic communication. Springer, Berlin, Heidelberg,pp. 105-127.

See Also

ffilter, bwfilter, preemphasis, lfs, afilter

Examples

require(signal)
f <- 8000
a <- noisew(f=f, d=1)
low-pass
1st order filter
res <- bwfilter(a, f=f, n=1, to=1500)
8th order filter
res <- bwfilter(a, f=f, n=8, to=1500)
high-pass
res <- bwfilter(a, f=f, from=2500)
band-pass
res <- bwfilter(a, f=f, from=1000, to=2000)
band-stop
res <- bwfilter(a, f=f, from=1000, to=2000,bandpass=FALSE)

ccoh Continuous coherence function between two time waves

Description

This function returns a two-dimension coherence representation between two time waves. The
function corresponds to a sliding coherence function along the two signals. This produces a 2-D
density plot. An amplitude contour plot can be overlaid.

Usage

ccoh(wave1, wave2, f, channel = c(1,1), wl = 512, ovlp = 0, plot = TRUE,
grid = TRUE, scale = TRUE, cont = FALSE,
collevels = seq(0, 1, 0.01), palette = reverse.heat.colors,
contlevels = seq(0, 1, 0.01), colcont = "black",

24 ccoh

colbg="white", colgrid = "black",
colaxis = "black", collab="black",
xlab = "Time (s)", ylab = "Frequency (kHz)",
scalelab = "Coherence",
main = NULL,
scalefontlab = 1, scalecexlab =0.75, axisX = TRUE, axisY = TRUE,
flim = NULL, flimd = NULL,
...)

Arguments

wave1 a first R object

wave2 a second R object

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R objects, by default left channel (1) for each object.

wl window length for the analysis (even number of points, by default = 512).

ovlp overlap between two successive windows (in %).

plot logical, if TRUE plots the continuous coherence function (by default TRUE).

grid logical, if TRUE plots a y-axis grid (by default TRUE).

scale logical, if TRUE plots a dB colour scale on the right side of the plot (by default
TRUE).

cont logical, if TRUE overplots contour lines on the plot (by default FALSE).

collevels a set of levels which are used to partition the amplitude range of the coherence
(should be between 0 and 1.

palette a color palette function to be used to assign colors in the plot, see Details.

contlevels a set of levels which are used to partition the amplitude range for contour over-
plot (in dB).

colcont colour for cont plotting.

colbg background colour.

colgrid colour for grid plotting.

colaxis color of the axes.

collab color of the labels.

xlab label of the time axis.

ylab label of the frequency axis.

scalelab label fo the amplitude scale.

main label of the main title.

scalefontlab font of the amplitude scale label.

scalecexlab cex of the amplitude scale label.

axisX logical, if TRUE plots time X-axis (by default TRUE).

axisY logical, if TRUE plots frequency Y-axis (by default TRUE).

ccoh 25

flim modifications of the frequency Y-axis limits.

flimd dynamic modifications of the frequency Y-axis limits. New wl and ovlp argu-
ments are applied to increase time/frequency resolution.

... other contour and oscillo graphical parameters.

Details

Coherence is a frequency domain function computed to show the degree of a relationship between
two signals. The value of the coherence function ranges between zero and one, where a value of
zero indicates there is no causal relationship between the signals. A value of one indicates the ex-
istence of linear frequency response between the two signals. This can be used, for instance, to
compare the input and output signals of a system.
Any colour palette can be used. In particular, it is possible to use other palettes coming with
seewave: temp.colors, reverse.gray.colors.1, reverse.gray.colors.2, spectro.colors,
reverse.terrain.colors, reverse.topo.colors, reverse.cm.colors corresponding to the re-
verse of terrain.colors, topo.colors, cm.colors.
Use locator to identify points.

Value

This function returns a list of three items:

time a numeric vector corresponding to the time axis.

freq a numeric vector corresponding to the frequency axis.

amp a numeric matrix corresponding to the coherence. Each column corresponds to
a coherence function of length wl.

Note

This function is based on spec.pgram, contour and filled.contour. See spectro for graphical
changes.

Author(s)

Jerome Sueur <sueur@mnhn.fr> but this function is mainly based on spec.pgram by Martyn Plum-
mer, Adrian Trapletti and B.D. Ripley

See Also

coh, spectro, spec.pgram.

Examples

wave1<-synth(d=1,f=4000,cf=500)
wave2<-synth(d=1,f=4000,cf=800)
ccoh(wave1,wave2,f=4000)

26 ceps

ceps Cepstrum or real cepstrum

Description

This function returns the cepstrum of a time wave allowing fundamental frequency detection.

Usage

ceps(wave, f, channel = 1, phase = FALSE, wl = 512, at = NULL, from = NULL, to = NULL,
tidentify = FALSE, fidentify = FALSE, col = "black", cex = 1, plot = TRUE,
qlab = "Quefrency (bottom: s, up: Hz)", alab = "Amplitude",
qlim = NULL, alim = NULL, type = "l", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

phase if TRUE than the phase is taken into account in the computation of the cepstrum.

wl if at is not null, length of the window for the analysis (even number of points,
by defaults = 512).

at position where to compute the cepstrum (in s).

from start position where to compute the cepstrum (in s).

to end position to compute the cepstrum (in s).

tidentify to identify time values on the plot with the help of a cursor.

fidentify to identify frequency values on the plot with the help of a cursor.

col colour of the cepstrum.

cex pitch size of the cepstrum.

plot logical, if TRUE plots the cepstrum.

qlab title of the quefrency axis (in s).

alab title of the amplitude axis.

qlim range of quefrency axis.

alim range of amplitude axis.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot graphical parameters.

ceps 27

Details

The cepstrum of a time wave is the inverse Fourier transform of the logarithm of the Fourier trans-
form. The cepstrum of a wave s is then calculated as follows:

C(s) = Re[FFT−1(log (|FFT (s)|)]

The independent variable of a cepstral graph is called the quefrency. The quefrency is a measure of
time, though not in the sense of a signal in the time domain. A correspondence with the frequency
domain is obtained by simply computing the reverse of the temporal x coordinate. For instance if a
peak appears at 0.005 s, this reveals a frequency peak at 200 Hz (=1/0.005). This explain the two
scales plotted when plot is TRUE.
If at, from or to are FALSE then ceps computes the cepstrum of the whole signal.
When using tidentify or tidentify, press ‘stop’ tools bar button to return values in the console.

Value

When plot is FALSE, ceps returns the cesptral profile as a two-column matrix, the first column
corresponding to quefrency (x-axis) and the second corresponding to amplitude (y-axis).

Warning

The argument peaks is no more available (version > 1.5.6). See the function fpeaks for peak(s)
detection.

Note

Cepstral analysis is mainly used in speech processing. This analysis allows to extract the funda-
mental frequency, see the examples.
This function is based on fft.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Oppenheim, A.V. and Schafer, R.W. 2004. From frequency to quefrency: a history of the cepstrum.
Signal Processing Magazine IEEE, 21: 95-106.

See Also

cepstro, fund, autoc

28 cepstro

Examples

data(sheep)
par(mfrow=c(2,1))
phase not taken into account
ceps(sheep,f=8000,at=0.4,wl=1024)
phase taken into account
ceps(sheep,f=8000,at=0.4,wl=1024, phase=TRUE)

cepstro 2D-cepstrogram of a time wave

Description

This function returns a two-dimension cepstrographic representation of a time wave. The function
corresponds to a short-term cepstral transform. An amplitude contour plot can be overlaid.

Usage

cepstro(wave, f, channel = 1, wl = 512, ovlp = 0, plot = TRUE, grid = TRUE,
scale = TRUE, cont = FALSE, collevels = seq(0, 1, 0.01),
palette = reverse.heat.colors, contlevels = seq(0, 1, 0.01),
colcont = "black", colbg="white", colgrid = "black",
colaxis = "black", collab = "black",
xlab = "Time (s)", ylab = "Quefrency (ms)",
scalelab = "Amplitude", main = NULL, scalefontlab = 1, scalecexlab = 0.75,
axisX = TRUE, axisY = TRUE, tlim = NULL, qlim = NULL, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl if at is not null, length of the window for the analysis (even number of points,
by defaults = 512).

ovlp overlap between two successive windows (in %).

plot logical, if TRUE plots the cepstrogram (by default TRUE).

grid logical, if TRUE plots a y-axis grid (by default TRUE).

scale logical, if TRUE plots a dB colour scale on the right side of the cesptrogram (by
default TRUE).

cont logical, if TRUE overplots contour lines on the cepstrogram (by default FALSE).

collevels a set of levels which are used to partition the amplitude range of the cepstrogram
(in dB).

palette a color palette function to be used to assign colors in the plot.

cepstro 29

contlevels a set of levels which are used to partition the amplitude range for contour over-
plot (in dB).

colcont colour for cont plotting.

colbg background colour.

colgrid colour for grid plotting.

colaxis color of the axes.

collab color of the labels.

xlab label of the time axis.

ylab label of the quefrency axis.

main label of the main title.

scalelab amplitude scale label.

scalefontlab font of the amplitude scale label.

scalecexlab cex of the amplitude scale label.

axisX if TRUE plots time X-axis (by default TRUE).

axisY if TRUE plots frequency Y-axis (by default TRUE).

tlim modifications of the time X-axis limits.

qlim modifications of the quefrency Y-axis limits (in ms).

... other contour graphical parameters.

Details

It is unfortunately not possible to turn the y-axis to a frequency scale.
See spectro for the use of the graphical arguments.

Value

This function returns a list of three items:

time a numeric vector corresponding to the time axis.

freq a numeric vector corresponding to the quefrency axis.

amp a numeric matrix corresponding to the the successive cepstral profiles computed
along time.

Note

This function is based on ceps.

Author(s)

Jerome Sueur <sueur@mnhn.fr>.

References

Oppenheim, A.V. and Schafer, R.W. 2004. From frequency to quefrency: a history of the cepstrum.
Signal Processing Magazine IEEE, 21: 95-106.

30 coh

See Also

ceps, fund, autoc

Examples

data(sheep)
sheepc <- cutw(sheep, f=8000, from = 0.19, to = 2.3)
cepstro(sheepc,f=8000)

coh Coherence between two time waves

Description

This function returns the frequency coherence between two time waves.

Usage

coh(wave1, wave2, f, channel=c(1,1), plot =TRUE, xlab = "Frequency (kHz)",
ylab = "Coherence", xlim = c(0,f/2000), type = "l",...)

Arguments

wave1 a first R object.

wave2 a second R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R objects, by default left channel (1) for each object.

plot logical, if TRUE plots the continuous coherence function (by default TRUE).

xlab title of the frequency X-axis.

ylab title of the coherence Y-axis.

xlim range of frequency X-axis.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot graphical parameters.

Details

Coherence is a frequency domain function computed to show the degree of a relationship between
two signals. The value of the coherence function ranges between zero and one, where a value of
zero indicates there is no causal relationship between the signals. A value of one indicates the
existence of linear frequency response between the two signals. This can be used, for instance, to
compare the input and output signals of a system.

combfilter 31

Value

When plot is FALSE, this coh returns a two-column matrix, the first column being the frequency
axis in kHz (x-axis) and the second column being the coherence (y-axis).

Note

This function is based on spec.pgram.

Author(s)

Jerome Sueur <sueur@mnhn.fr> but this function is based on spec.pgram by Martyn Plummer,
Adrian Trapletti and B.D. Ripley.

See Also

ccoh, spectro, spec.pgram.

Examples

wave1<-synth(d=1,f=4000,cf=500)
wave2<-synth(d=1,f=4000,cf=800)
coh(wave1,wave2,f=4000)

combfilter Comb filter

Description

This function processes a feedforward comb filter and plots a spectrogram of the filtered wave asso-
ciated with the frequency response of the filter.

Usage

combfilter(wave, f, channel = 1, alpha, K, units = c("samples", "seconds"),
plot = FALSE, output = "matrix", ...)

Arguments

wave an R object

f sampling frequency (in Hz). Does not need to be specified if embedded in wave.

channel channel of the R object, by default left channel (1).

alpha a numeric vector of length 1 for the scaling factor. See Details.

K a numeric vector of lenght 1 for the delay length, in units. See Details.

units units in which K is given, the default is 'samples' but can be set to 'seconds'.

plot a logical, if TRUE plots the spectrogram of the filtered wave and the frequency
response of the comb filter.

32 combfilter

output character string, the class of the object to return, either 'matrix', 'Wave',
'Sample', 'audioSample' or 'ts'.

... other arguments to be passed to spectro except scale and osc that are set by
default to FALSE.

Details

A comb filter consists in adding a delayed version of a signal to itself resulting in constructive and
destructive interference. The feedforward version of a comb filter can be written following:

y(n) = x(n) + α× x(n−K)

where alpha is the scaling factor and K the delay length. The frequency response of the filter is
obtained with:

H(f) =
√
(1 + α2) + 2× cos(ωK)

The frequency response is periodic. The depth of the cycles is controlled with alpha and the number
of cycles with K.

Value

A new wave is returned. The class of the returned object is set with the argument output.

Note

Setting K to high values may generate unwanted results.
The feedback form of the combfilter is not implemented yet.

Author(s)

Jerome Sueur

See Also

combfilter, fir, squarefilter, drawfilter, ffilter, bwfilter

Examples

Not run:
f <- 44100
chirp
s1 <- synth(f=f, cf=1, d=2, fm=c(0,0,f/2,0,0), out="Wave")
combfilter(s1, alpha=1, K=50, plot=TRUE)
harmonic sound
s2 <- synth(f=f, d=2, cf=600, harmonics=rep(1, 35), output="Wave")
combfilter(s2, alpha=1, K=10, plot=TRUE)
noise, units in seconds
s3 <- noisew(d=2, f=44100, out="Wave")
combfilter(s3, alpha=0.5, K=1e-4, units="seconds", plot=TRUE)

End(Not run)

convSPL 33

convSPL Convert sound pressure level in other units

Description

This function converts sound pressure level (in dB) in sound power (Watt), intensity (Watt/m2) and
pressure (Pa). By default, these conversions are applied to air-borne sound.

Usage

convSPL(x, d = 1, Iref = 10^-12, pref = 2*10^-5)

Arguments

x a numeric vector or a matrix describind SPL values (in dB).
d the distance from the sound source where SPL values have been measured (in

meter) (by default = 1m)
Iref reference intensity (in Watt/m2) (by default = 10^-12)
pref reference pressure (in Pa) (by default = 2*10^-5)

Value

convSPL returns a list containing three components:

P data converted in sound power (in Watt).
I data converted in sound intensity (in Watt/m2).
p data converted in sound pressure (in Pa).

Note

Iref and pref correspond to a 1 kHz sound in air.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Hartmann, W. M. 1998 Signals, sound and sensation. New York: Springer.

See Also

moredB, dBweight, attenuation

Examples

conversion of two SPL measurements taken at 0.5 m from the source
convSPL(c(80,85),d=0.5)

34 corenv

corenv Cross-correlation between two time wave envelopes

Description

This function tests the similarity between two time wave envelopes by returning their maximal
correlation and the time shift related to it.

Usage

corenv(wave1, wave2, f, channel=c(1,1), envt="hil", msmooth = NULL, ksmooth = NULL,
ssmooth = NULL, plot = TRUE, plotval = TRUE,
method = "spearman", col = "black", colval = "red",
cexval = 1, fontval = 1, xlab = "Time (s)",
ylab = "Coefficient of correlation (r)", type = "l", pb = FALSE, ...)

Arguments

wave1 a first R object.

wave2 a second R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R objects, by default left channel (1) for each object.

envt the type of envelope to be used: either "abs" for absolute amplitude envelope or
"hil" for Hilbert amplitude envelope. See env.

msmooth a vector of length 2 to smooth the amplitude envelope with a mean sliding win-
dow. The first component is the window length (in number of points). The
second component is the overlap between successive windows (in %). See env.

ksmooth kernel smooth via kernel. See env.

ssmooth sum smooth. See env.

plot logical, if TRUE plots r values against frequency shift (by default TRUE).

plotval logical, if TRUE adds to the plot maximum r value and frequency offset (by de-
fault TRUE).

method a character string indicating which correlation coefficient is to be computed
("pearson", "spearman", or "kendall") (see cor).

col colour of r values.

colval colour of r max and frequency offset values.

cexval character size of r max and frequency offset values.

fontval font of r max and frequency offset values.

xlab title of the frequency axis.

ylab title of the r axis.

corenv 35

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

pb if TRUE returns a text progress bar in the console.

... other plot graphical parameters.

Details

Successive correlations between the envelopes of wave1 and wave2 are computed when regularly
sliding forward and backward wave2 along wave1.
The maximal correlation is obtained at a particular shift (time offset). This shift may be positive or
negative.
The higher smooth is set up, the faster will be the computation but less precise the results will be.
The corresponding p value, obtained with cor.test, is plotted. Inverting wave1 and wave2 may
give slight different results.

Value

If plot is FALSE, corenv returns a list containing four components:

r a two-column matrix, the first colum corresponding to the time shift (frequency
x-axis) and the second column corresponding to the successive r correlation val-
ues between env1 and env2 (correlation y-axis).

rmax the maximum correlation value between x and y.

p the p value corresponding to rmax.

t the time offset corresponding to rmax.

Author(s)

Jerome Sueur

See Also

env,corspec,covspectro, cor,cor.test.

Examples

Not run:
data(orni)
cross-correlation between two echemes of a cicada song
wave1<-cutw(orni,f=22050,from=0.3,to=0.4,plot=FALSE)
wave2<-cutw(orni,f=22050,from=0.58,to=0.68,plot=FALSE)
corenv(wave1,wave2,f=22050)

End(Not run)

36 corspec

corspec Cross-correlation between two frequency spectra

Description

This function tests the similarity between two frequency spectra by returning their maximal corre-
lation and the frequency shift related to it.

Usage

corspec(spec1, spec2, f = NULL, mel = FALSE, plot = TRUE, plotval = TRUE,
method = "spearman", col = "black", colval = "red",
cexval = 1, fontval = 1, xlab = NULL,
ylab = "Coefficient of correlation (r)", type="l",...)

Arguments

spec1 a first data set resulting of a spectral analysis obtained with spec or meanspec
(not in dB). This can be either a two-column matrix (col1 = frequency, col2 =
amplitude) or a vector (amplitude).

spec2 a first data set resulting of a spectral analysis obtained with spec or meanspec
(not in dB). This can be either a two-column matrix (col1 = frequency, col2 =
amplitude) or a vector (amplitude).

f sampling frequency of waves used to obtain spec1 and spec2 (in Hz). Not
necessary if spec1 and/or spec2 is a two columns matrix obtained with spec or
meanspec.

mel a logical, if TRUE the (htk-)mel scale is used.

plot logical, if TRUE plots r values against frequency shift (by default TRUE).

plotval logical, if TRUE adds to the plot maximum r value and frequency offset (by de-
fault TRUE).

method a character string indicating which correlation coefficient is to be computed
("pearson", "spearman", or "kendall") (see cor).

col colour of r values.

colval colour of r max and frequency offset values.

cexval character size of r max and frequency offset values.

fontval font of r max and frequency offset values.

xlab title of the frequency axis.

ylab title of the r axis.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot graphical parameters.

corspec 37

Details

It is important not to have data in dB.
Successive correlations between spec1 and spec2 are computed when regularly shifting spec2
towards lower or higher frequencies.
The maximal correlation is obtained at a particular shift (frequency offset). This shift may be
positive or negative.
The corresponding p value, obtained with cor.test, is plotted.
Inverting spec1 and spec2 may give slight different results, see examples.

Value

If plot is FALSE, corspec returns a list containing four components:

r a two-column matrix, the first colum corresponding to the frequency shift (fre-
quency x-axis) and the second column corresponding to the successive r corre-
lation values between spec1 and spec2 (correlation y-axis).

rmax the maximum correlation value between spec1 and spec2.

p the p value corresponding to rmax.

f the frequency offset corresponding to rmax.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

References

Hopp, S. L., Owren, M. J. and Evans, C. S. (Eds) 1998. Animal acoustic communication. Springer,
Berlin, Heidelberg.

See Also

spec, meanspec, corspec, covspectro, cor, cor.test.

Examples

Not run: data(tico)
compare the two first notes spectra
a<-spec(tico,f=22050,wl=512,at=0.2,plot=FALSE)
c<-spec(tico,f=22050,wl=512,at=1.1,plot=FALSE)
op<-par(mfrow=c(2,1), mar=c(4.5,4,3,1))
spec(tico,f=22050,at=0.2,col="blue")
par(new=TRUE)
spec(tico,f=22050,at=1.1,col="green")
legend(x=8,y=0.5,c("Note A", "Note C"),lty=1,col=c("blue","green"),bty="o")
par(mar=c(5,4,2,1))
corspec(a,c, ylim=c(-0.25,0.8),xaxs="i",yaxs="i",las=1)
par(op)
different correlation methods give different results...
op<-par(mfrow=c(3,1))
corspec(a,c,xaxs="i",las=1, ylim=c(-0.25,0.8))

38 covspectro

title("spearmann correlation (by default)")
corspec(a,c,xaxs="i",las=1,ylim=c(0,1),method="pearson")
title("pearson correlation")
corspec(a,c,xaxs="i",las=1,ylim=c(-0.23,0.5),method="kendall")
title("kendall correlation")
par(op)
inverting x and y does not give exactly similar results
op<-par(mfrow=c(2,1),mar=c(2,4,3,1))
corspec(a,c)
corspec(c,a)
par(op)
mel scale
require(tuneR)
data(orni)
orni.mel <- melfcc(orni, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
orni.mel.mean <- apply(orni.mel$aspectrum, MARGIN=2, FUN=mean)
tico.mel <- melfcc(tico, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
tico.mel.mean <- apply(tico.mel$aspectrum, MARGIN=2, FUN=mean)
corspec(orni.mel.mean, tico.mel.mean, f=22050, mel=TRUE, plot=TRUE)

End(Not run)

covspectro Covariance between two spectrograms

Description

This function tests the similarity between two spectrograms by returning their maximal covariance
and the time shift related to it.

Usage

covspectro(wave1, wave2, f, channel = c(1,1), wl = 512, wn = "hanning", n,
plot = TRUE, plotval = TRUE,
method = "spearman", col = "black", colval = "red", cexval = 1,
fontval = 1, xlab = "Time (s)",
ylab = "Normalised covariance (cov)", type = "l", pb = FALSE, ...)

Arguments

wave1 a first R object.

wave2 a second R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R objects, by default left channel (1) for each object.

wl length of the window for the analysis (even number of points, by default = 512).

wn window name, see ftwindow (by default "hanning").

covspectro 39

n number of covariances computed between wave1 and wave2 when sliding wave2
along wave1.

plot logical, if TRUE plots r values against frequency shift (by default TRUE).

plotval logical, if TRUE adds to the plot maximum R value and frequency offset (by
default TRUE).

method a character string indicating which correlation coefficient is to be computed
("pearson", "spearman", or "kendall") (see cor).

col colour of r values.

colval colour of r max and frequency offset values.

cexval character size of r max and frequency offset values.

fontval font of r max and frequency offset values.

xlab title of the frequency axis.

ylab title of the r axis.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

pb if TRUE returns a text progress bar in the console.

... other plot graphical parameters.

Details

Successive covariances between the spectrogram of wave1 and the spectrogram of wave2 are com-
puted when regularly sliding forward and backward wave2 along wave1.
The maximal covariance is obtained at a particular shift (time offset). This shift may be positive or
negative.
n sets in how many steps wave2 will be slided along wave1. Time process can be then decreased by
setting low n value.
Inverting wave1 and wave2 may give slight different results.

Value

If plot is FALSE, covspectro returns a list containing three components:

cov the successive covariance values between wave1 and wave2.

covmax the maximum covariance between wave1 and wave2.

t the time offset corresponding to cov.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Hopp, S. L., Owren, M. J. and Evans, C. S. (Eds) 1998. Animal acoustic communication. Springer,
Berlin, Heidelberg.

40 crest

See Also

corspec, corenv, spectro, cor,

Examples

covariance between two notes of a birdsong
Not run:
data(tico)
note1<-cutw(tico, f=22050, from=0.5, to=0.9)
note2<-cutw(tico, f=22050, from=0.9, to=1.3)
covspectro(note1,note2,f=22050,n=37)

End(Not run)

crest Crest factor and visualization

Description

This function returns the crest factor and localizes the different crest(s).

Usage

crest(wave, f, channel = 1, plot = FALSE, col = 2, cex = 3, symbol = "*", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

plot if TRUE plots the oscillogram of wave and indicates the location of the crest(s)

col color of the symbol indicating the localisation of the crest(s)

cex symbol magnification

symbol symbol indicating the localisation of the crest(s)

... other

Details

The crest factor of a time series s is calculated according to:

C =
max(s)

rms(s)

with rms the root-mean-square (see rms).

csh 41

Value

The function returns a list of three items

C crest factor

val value of the crest(s)

loc location of the crest(s)

Note

There might be several crests (maxima) along the time wave but there is a single crest factor.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Hartmann, W. M. 1998 Signals, sound and sensation. New York: Springer.

See Also

oscillo, rms

Examples

data(tico)
crest(tico, f=22050)
see the crest location and change the default graphical parameters
crest(tico, f=22050, plot=TRUE, sym="-")

csh Continuous spectral entropy

Description

This function computes the continuous spectral entropy (H) of a time wave.

Usage

csh(wave, f, channel = 1, wl = 512, wn = "hanning", ovlp = 0,
fftw = FALSE, threshold = NULL,
plot = TRUE, xlab = "Times (s)", ylab = "Spectral Entropy",
ylim = c(0, 1.1), type = "l", ...)

42 csh

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl if at is not null, length of the window for the analysis (even number of points,
by default = 512).

wn window name, see ftwindow (by default "hanning").

ovlp overlap between two successive windows (in %).

fftw if TRUE calls the function FFT of the library fftw. See Notes of the spectro.

threshold amplitude threshold for signal detection (in %).

plot logical, if TRUE plots the spectral entropy against time (by default TRUE).

xlab title of the x axis.

ylab title of the y axis.

ylim the range of y values.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot graphical parameters.

Details

See sh for computing method.

Value

When plot is FALSE, csh returns a two-column matrix, the first column being time in seconds (x-
axis) and the second column being the spectral entropy (y-axis) computed along time.
NA corresponds to pause sections in wave (see threshold).

Note

The spectral entropy of a noisy signal will tend towards 1 whereas the spectral entropy of a pure
tone signal will tend towards 0.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Toh, A. M., Togneri, R. & Nordholm, S. 2005 Spectral entropy as speech features for speech recog-
nition. Proceedings of PEECS, pp. 60-65.

See Also

sh, th

cutspec 43

Examples

data(orni)
csh(orni,f=22050,wl=512,ovlp=50)
using the threshold argument can lead to some edge effets
here sh=1 at the end of echemes
csh(orni,f=22050,wl=512,ovlp=50,threshold=5)

cutspec Cut a frequency spectrum

Description

This function can be used to select (cut) a specific part of a frequency spectrum.

Usage

cutspec(spec, f = NULL, flim, mel = FALSE, norm = FALSE, PMF = FALSE)

Arguments

spec a vector or a two-column matrix set resulting of a spectral analysis. This can be
the value obtained with spec or meanspec.

f sampling frequency of spec (in Hz).

flim a vector of length 2 to specify the new frequency range (in kHz).

mel a logical, if TRUE the (htk-)mel scale is used.

norm a logical, if TRUE the spectrum returned is normalised between 0 and 1.

PMF a logical, if TRUE the spectrum returned is a probability mass function.

Value

A new spectrum is returned. The class of the returned object is the one of the input object (spec)

Note

The sampling frequency f is not necessary if spec has been obtained with either spec or meanspec.
This function can be used before calling analysis function like sh or sfm. See examples.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

See Also

spec, meanspec

44 cutw

Examples

data(orni)
a <- meanspec(orni,f=22050,plot=FALSE)
b <- cutspec(a,flim=c(4,8))
quick check with a plot
plot(b,type="l")
effects on spectral entropy
sfm(a)
sfm(b)
mel scale
require(tuneR)
mel <- melfcc(orni, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
melspec.mean <- apply(mel$aspectrum, MARGIN=2, FUN=mean)
c <- cutspec(melspec.mean, f=22050, flim=c(4000,8000), mel=TRUE)

cutw Cut a section of a time wave

Description

This function selects and cuts a section of data describing a time wave. Original and cut sections
can be plotted as oscillograms for comparison.

Usage

cutw(wave, f, channel=1, from = NULL, to = NULL, choose = FALSE,
plot = FALSE, marks = TRUE, output="matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

from start mark (in s).

to end mark (in s).

choose logical, if TRUE start (=from) and end (=to) points can be graphically chosen
with a cursor on the oscillogram.

plot logical, if TRUE returns an oscillographic plot of original and cut sections (by
default FALSE).

marks logical, if TRUE shows the start and end mark on the plot (by default TRUE).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

dBscale 45

Details

If plot is TRUE returns a two-frame plot with both original and cut sections.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur

See Also

oscillo, addsilw,deletew, fadew,mutew,pastew,revw, zapsilw

Examples

a 0.4 s section in a bird song
data(tico)
a<-cutw(tico,f=22050,from=0.5,to=0.9)
oscillo(a,22050)
a direct way to see what has been cut
cutw(tico,f=22050,from=0.5,to=0.9,plot=TRUE)

dBscale dB colour scale for a spectrogram display

Description

This function displays a vertical or horizontal dB colour scale to be used with spectro plots.

Usage

dBscale(collevels, palette = spectro.colors, side = 4,
textlab = "Amplitude\n(dB)", cexlab = 0.75,
fontlab = 1, collab = "black", colaxis = "black",...)

Arguments

collevels a set of levels which are used to partition the amplitude range of the spectrogram
(in dB).

palette a color palette function to be used to assign colors in the plot, see note.

side side of the axis.

textlab text of the label.

cexlab character size of the label.

46 dBscale

fontlab font of the label.

collab colour of the label.

colaxis colour of the axis.

... other axis arguments.

Note

This function, based on filled.contour by Ross Ihaka, is not supposed to be used by itself but as
a legend of spectro.
Any colour palette can be used. In particular, it is possible to use other palettes coming with
seewave: rev.gray.colors.1, rev.gray.colors.2, rev.heat.colors, rev.terrain.colors,
rev.topo.colors, rev.cm.colors corresponding to the reverse of heat.colors, terrain.colors,
topo.colors, cm.colors.

Author(s)

Jerome Sueur <sueur@mnhn.fr> and Caroline Simonis <csimonis@mnhn.fr>.

See Also

spectro.

Examples

data(pellucens)
place the scale on the left and not on the right as spectro() does
def.par <- par(no.readonly = TRUE)
layout(matrix(c(1, 2), nc = 2), widths = c(1, 5))
par(mar=c(5,3,4,2))
dBscale(collevels=seq(-30,0,1),side=2)
par(mar=c(5,4,4,2))
spectro(pellucens, f=22050,wl=512,scale=FALSE)
par(def.par)
place the scale on the top and not on the right as spectro() does
def.par <- par(no.readonly = TRUE)
layout(matrix(c(0,1,2,2), nc = 2, byrow=TRUE),widths=c(1,2),heights=(c(1,5.5)))
par(mar=c(0.5,3,4,2))
dBscale(collevels=seq(-30,0,1), textlab = "",side=3)
mtext("Amplitude (dB)",side=2,line = 1,at=0.6,cex=0.75)
par(mar=c(5,4,0.5,2))
spectro(pellucens, f=22050,wl=512,scale=FALSE)
par(def.par)

dBweight 47

dBweight dB weightings

Description

This function returns the four most common dB weightings.

Usage

dBweight(f, dBref = NULL)

Arguments

f frequency (in Hz).

dBref dB reference level (by default NULL).

Details

By default, the function returns four weightings. When dBref is not NULL then the function returns
the conversion from a dB reference level to four dB weighting levels.

Value

dBweight returns a list of five items corresponding to five dB weightings.

A dB (A)

B dB (B)

C dB (C)

D dB (D)

ITU dB ITU-R 468

Note

The transfer equations used here come from Wipipedia but they were originally coming from the ap-
pendix of an international standard on the design performance of sound level meters IEC 651:1979
(Neil Glenister, pers. com.).

Author(s)

Jerome Sueur <sueur@mnhn.fr>, Zev Ross, and Andrey Anikin

References

https://en.wikipedia.org/wiki/A-weighting, https://en.wikipedia.org/wiki/ITU-R_468_
noise_weighting

https://en.wikipedia.org/wiki/A-weighting
https://en.wikipedia.org/wiki/ITU-R_468_noise_weighting
https://en.wikipedia.org/wiki/ITU-R_468_noise_weighting

48 deletew

See Also

convSPL, moredB

Examples

weight for a 50 Hz frequency
dBweight(f=50)
A weight for the 1/3 Octave centre frequencies.
dBweight(f=c(20,25,31.5,40,50,63,80,100,125,160,200,250,
315,400,500,630,800,1000,1500,
1600,2000,2500,3150,4000,5000,
6300,8000,10000,12500,16000,20000))$A
correction for a 50 Hz sound emitted at 100 dB
dBweight(f=50, dB=100)
weighting curves plot
f <- seq(10,20000,by=10)
par(las=1)
plot(f, dBweight(f)$A, type="n", log="x",
xlim=c(10,10^5),ylim=c(-80,20),xlab="",ylab="",xaxt="n",yaxt="n")
abline(v=c(seq(10,100,by=10),seq(100,1000,by=100),
seq(1000,10000,by=1000),seq(10000,100000,by=10000),
c(100,1000,10000,100000)),col="lightgrey",lty=2)
abline(v=c(100,1000,10000,100000),col="grey")
abline(h=seq(-80, 20, 20),col="grey")
par(new=TRUE)
plot(f, dBweight(f)$A, type="l", log="x",
xlab="Frequency (Hz)", ylab="dB",lwd=2, col="blue", xlim=c(10,10^5),ylim=c(-80,20))
title(main="Acoustic weighting curves (10 Hz - 20 kHz)")
lines(x=f, y=dBweight(f)$B, col="green",lwd=2)
lines(x=f, y=dBweight(f)$C, col="red",lwd=2)
lines(x=f, y=dBweight(f)$D, col="black",lwd=2)
legend("bottomright",legend=c("dB(A)","dB(B)","dB(C)","dB(D)"),
lwd=2,col=c("blue","green","red","black"),bty="o",bg="white")

deletew Delete a section of a time wave

Description

This function selects and delete a section of data describing a time wave. Original section and
section after deletion can be plotted as oscillograms for comparison.

Usage

deletew(wave, f, channel = 1, from = NULL, to = NULL, choose = FALSE, plot = FALSE,
marks = TRUE, output = "matrix", ...)

deletew 49

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

from start position (in s).

to end position (in s).

choose logical, if TRUE start (=from) and end (=to) points can be graphically chosen
with a cursor on the oscillogram.

plot logical, if TRUE returns an oscillographic plot of original and cut sections (by
default FALSE).

marks logical, if TRUE shows the start and end mark on the plot (by default TRUE).

output character string, the class of the object to return, either "matrix", "Wave", "Sam-
ple", "audioSample" or "ts".

... other oscillo graphical parameters.

Details

If plot is TRUE returns a two-frame plot with both original and resulting sections.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

oscillo, addsilw,cutw, fadew, mutew, pastew, revw, zapsilw

Examples

deletion a 0.4 s section in a bird song
data(tico)
a<-deletew(tico,f=22050,from=0.5,to=0.9)
oscillo(a,22050)
a direct way to see what has been cut
deletew(tico,f=22050,from=0.5,to=0.9,plot=TRUE)

50 dfreq

dfreq Dominant frequency of a time wave

Description

This function gives the dominant frequency (i. e. the frequency of highest amplitude) of a time
wave.

Usage

dfreq(wave, f, channel = 1, wl = 512, wn = "hanning", ovlp = 0, fftw= FALSE, at =
NULL, tlim = NULL, threshold = NULL, bandpass = NULL, clip = NULL,
plot = TRUE, xlab = "Times (s)", ylab = "Frequency (kHz)",
ylim = c(0, f/2000), ...)

Arguments

wave an R object.
f sampling frequency of wave (in Hz). Does not need to be specified if embedded

in wave.
channel channel of the R object, by default left channel (1).
wl length of the window for the analysis (even number of points, by default = 512).
wn window name, see ftwindow (by default "hanning").
ovlp overlap between two successive analysis windows (in %).
fftw if TRUE calls the function FFT of the library fftw. See Notes of the spectro.
at time position where the dominant frequency has to be computed (in s.).
tlim modifications of the time X-axis limits.
threshold amplitude threshold for signal detection (in %).
bandpass a numeric vector of length two, giving the lower and upper limits of a frequency

bandpass filter (in Hz).
clip a numeric value to select dominant frequency values according to their ampli-

tude in reference to a maximal value of 1 for the whole signal (has to be >0 & <
1).

plot logical, if TRUE plots the dominant frequency against time (by default TRUE).
xlab title of the x axis.
ylab title of the y axis.
ylim the range of y values.
... other plot graphical parameters.

Value

When plot is FALSE, dfreq returns a two-column matrix, the first column corresponding to time in
seconds (x-axis) and the second column corresponding to to dominant frequency in kHz (y-axis).
NA corresponds to pause sections in wave (see threshold).

diffcumspec 51

Note

This function is based on fft.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

spec, meanspec,spectro.

Examples

data(tico)
f <- 22050
default
dfreq(tico,f)
using the amplitude threshold and changing the graphical output
dfreq(tico, f, ovlp=50,threshold=5, type="l", col=2)
using 'at' argument for specific positions along the time axis
dfreq(tico, f, at=c(0.25, 0.75, 1.2, 1.6))
dfreq(tico, f, at=seq(0.5, 1.4, by=0.005), threshold=5)
a specific number of measures on a single note
dfreq(tico, f, at=seq(0.5, 0.9, len=100), threshold=5, xlim=c(0.5,0.9))
overlap on spectrogram
and use of 'clip' argument to better track the dominant frequency
in noisy conditions
op <- par()
ticon <- tico@left/max(tico@left) + noisew(d=length(tico@left)/f, f)
spectro(ticon, f)
res <- dfreq(ticon, f, clip=0.3, plot=FALSE)
points(res, col=2, pch =13)
par(op)

diffcumspec Difference between two cumulative frequency spectra

Description

This function compares two distributions (e.g. two frequency spectra) by computing the difference
between two cumulative frequency spectra

Usage

diffcumspec(spec1, spec2, f = NULL, mel = FALSE,
plot = FALSE, type = "l", lty = c(1, 2), col = c(2, 4, 8),
flab = NULL, alab = "Cumulated amplitude",
flim = NULL, alim = NULL,
title = TRUE, legend = TRUE, ...)

52 diffcumspec

Arguments

spec1 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

spec2 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

f sampling frequency of waves used to obtain spec1 and spec2 (in Hz). Not
necessary if spec1 and/or spec2 is a two columns matrix obtained with spec or
meanspec.

mel a logical, if TRUE the (htk-)mel scale is used.

plot logical, if TRUE plots both cumulative spectra and their distance.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

col a vector of length 3 for the colour of spec1, spec2, and the difference between
each of them.

lty a vector of length 2 for the line type of spec1 and spec2 if type="l".

flab title of the frequency axis.

alab title of the amplitude axis.

flim the range of frequency values.

alim range of amplitude axis.

title logical, if TRUE, adds a title with D and F values.

legend logical, if TRUE adds a legend to the plot.

... other plot graphical parameters.

Details

Both spectra are transformed into cumulative distribution functions (CDF).
Spectral difference is then computed according to:

Dcf (x, y) =

∑n
i=1 |Xi − Yi|

n
,withwithXandY thespectrumCDFs, andD ∈ [0, 1].

Value

A numeric vector of length 1 returning the difference between the two spectra. No unit.

Note

This metric is sensitive not only to the spectral overlap between but also to the mean frequential
distance between the different frequency peaks.

Author(s)

Laurent Lellouch, Jerome Sueur

diffenv 53

References

Lellouch L, Pavoine S, Jiguet F, Glotin H, Sueur J (2014) Monitoring temporal change of bird
communities with dissimilarity acoustic indices. Methods in Ecology and Evolution, in press.

See Also

kl.dist, ks.dist, simspec, diffspec, logspec.dist, itakura.dist

Examples

Hz scale
data(tico)
data(orni)
orni.hz <- meanspec(orni, plot=FALSE)
tico.hz <- meanspec(tico, plot=FALSE)
diffcumspec(orni.hz, tico.hz, plot=TRUE)
mel scale
require(tuneR)
orni.mel <- melfcc(orni, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
orni.mel.mean <- apply(orni.mel$aspectrum, MARGIN=2, FUN=mean)
tico.mel <- melfcc(tico, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
tico.mel.mean <- apply(tico.mel$aspectrum, MARGIN=2, FUN=mean)
diffcumspec(orni.mel.mean, tico.mel.mean, f=22050, mel=TRUE, plot=TRUE)

diffenv Difference between two amplitude envelopes

Description

This function estimates the surface difference between two amplitude envelopes.

Usage

diffenv(wave1, wave2, f, channel = c(1,1), envt = "hil", msmooth = NULL, ksmooth = NULL,
plot = FALSE, lty1 = 1, lty2 = 2, col1 = 2, col2 = 4, cold = 8,
xlab = "Time (s)", ylab = "Amplitude", ylim = NULL, legend = TRUE, ...)

Arguments

wave1 a first R object.

wave2 a second R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R objects, by default left channel (1) for each object.

envt the type of envelope to be used: either "abs" for absolute amplitude envelope or
"hil" for Hilbert amplitude envelope. See env.

54 diffenv

msmooth a vector of length 2 to smooth the amplitude envelope with a mean sliding win-
dow. The first component is the window length (in number of points). The
second component is the overlap between successive windows (in %). See env.

ksmooth kernel smooth via kernel. See env.

plot logical, if TRUE plots both envelopes and their surface difference (by default
FALSE).

lty1 line type of the first envelope (envelope of wave1).

lty2 line type of the second envelope (envelope of wave2).

col1 colour of the first envelope (envelope of wave1).

col2 colour of the second envelope (envelope of wave2).

cold colour of the surface difference.

xlab title of the time axis.

ylab title of the amplitude axis.

ylim range of amplitude axis.

legend logical, if TRUE adds a legend to the plot.

... other plot graphical parameters.

Details

D is a Manhattan distance (l1 norm).
Envelopes of both waves are first transformed as probability mass functions (PMF).
Envelope difference is then computed according to:

D =

∑
|env1− env2|

2
, withD ∈ [0, 1].

Value

The difference is returned. This value is without unit. When plot is TRUE, both envelopes and their
difference surface are plotted on the same graph.

Note

This method can be used as a relative distance estimation between different envelopes.

Author(s)

Jerome Sueur <sueur@mnhn.fr>.

References

Sueur, J., Pavoine, S., Hamerlynck, O. & Duvail, S. (2008) - Rapid acoustic survey for biodiversity
appraisal. PLoS ONE, 3(12): e4065.

See Also

env, corenv, diffspec, diffwave

diffspec 55

Examples

data(tico) ; tico <- tico@left
data(orni) ; orni <- orni@left
selection in tico of two waves with similar duration
tico2<-tico[1:length(orni)]
diffenv(tico2,orni,f=22050,plot=TRUE)
smoothing the envelope gives a better graph but slightly changes the result
diffenv(tico2,orni,f=22050,msmooth=c(20,0),plot=TRUE)

diffspec Difference between two frequency spectra

Description

This function estimates the surface difference between two frequency spectra.

Usage

diffspec(spec1, spec2, f = NULL, mel = FALSE,
plot = FALSE, type="l",
lty=c(1, 2), col =c(2, 4, 8),
flab = NULL, alab = "Amplitude",
flim = NULL, alim = NULL, title = TRUE, legend = TRUE, ...)

Arguments

spec1 a first data set resulting of a spectral analysis obtained with spec or meanspec
(not in dB). This can be either a two-column matrix (col1 = frequency, col2 =
amplitude) or a vector (amplitude).

spec2 a first data set resulting of a spectral analysis obtained with spec or meanspec
(not in dB). This can be either a two-column matrix (col1 = frequency, col2 =
amplitude) or a vector (amplitude).

f sampling frequency of waves used to obtain spec1 and spec2 (in Hz). Not
necessary if spec1 and/or spec2 is a two-column matrix obtained with spec or
meanspec.

mel a logical, if TRUE the (htk-)mel scale is used.

plot logical, if TRUE plots both spectra and their surface difference (by default FALSE).

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

lty a vector of length 2 for the line type of spec1 and spec2 if type="l".

col a vector of length 3 for the colour of spec1, spec2, and the surface difference
between each of them.

flab title of the frequency axis.

alab title of the amplitude axis.

56 diffspec

flim the range of frequency values.

alim range of amplitude axis.

title logical, if TRUE, adds a title with D value.

legend logical, if TRUE adds a legend to the plot.

... other plot graphical parameters.

Details

D is a Manhattan distance (l1 norm).
Both spectra are first transformed as probability mass functions (PMF).
Spectral difference is then computed according to:

D =

∑
|spec1− spec2|

2
, withD ∈ [0, 1].

, with 0 < D < 1.

Value

The difference is returned. This value is without unit. When plot is TRUE, both spectra and their
difference surface are plotted on the same graph.

Note

This method can be used as a relative distance estimation between different spectra.
The dB value obtained can be very different from the one visually estimated when looking at the
graph (plot=TRUE).

Author(s)

Jerome Sueur, Sandrine Pavoine and Laurent Lellouch

References

Sueur, J., Pavoine, S., Hamerlynck, O. and Duvail, S. (2008). Rapid acoustic survey for biodiversity
appraisal. PLoS One, 3(12): e4065.

See Also

spec, meanspec, corspec, simspec, diffcumspec, diffenv, kl.dist, ks.dist, logspec.dist,
itakura.dist

Examples

a <- noisew(f=8000,d=1)
b <- synth(f=8000,d=1,cf=2000)
c <- synth(f=8000,d=1,cf=1000)
d <- noisew(f=8000,d=1)
speca <- spec(a,f=8000,wl=512,at=0.5,plot=FALSE)
specb <- spec(b,f=8000,wl=512,at=0.5,plot=FALSE)

diffwave 57

specc <- spec(c,f=8000,wl=512,at=0.5,plot=FALSE)
specd <- spec(d,f=8000,wl=512,at=0.5,plot=FALSE)
diffspec(speca,speca,f=8000)
#[1] 0 => similar spectra of course !
diffspec(speca,specb)
diffspec(speca,specc,plot=TRUE)
diffspec(specb,specc,plot=TRUE)
diffspec(speca,specd,plot=TRUE)
mel scale
require(tuneR)
data(orni)
data(tico)
orni.mel <- melfcc(orni, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
orni.mel.mean <- apply(orni.mel$aspectrum, MARGIN=2, FUN=mean)
tico.mel <- melfcc(tico, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
tico.mel.mean <- apply(tico.mel$aspectrum, MARGIN=2, FUN=mean)
diffspec(orni.mel.mean, tico.mel.mean, f=22050, mel=TRUE, plot=TRUE)

diffwave Difference between two time waves

Description

This function estimates the difference between two waves by computing the product between enve-
lope surface difference and frequency surface difference.

Usage

diffwave(wave1, wave2, f, channel = c(1,1), wl = 512, envt = "hil",
msmooth = NULL, ksmooth = NULL)

Arguments

wave1 a first R object.

wave2 a second R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R objects, by default left channel (1) for each object.

wl window length for spectral analysis (even number of points).

envt the type of envelope to be used: either "abs" for absolute amplitude envelope or
"hil" for Hilbert amplitude envelope. See env.

msmooth a vector of length 2 to smooth the amplitude envelope with a mean sliding win-
dow. The first component is the window length (in number of points). The
second component is the overlap between successive windows (in %). See env.

ksmooth kernel smooth via kernel. See env.

58 diffwave

Details

D is a Manhattan distance (l1 norm).
This function computes the product between the values obtained with diffspec and diffenv func-
tions.
This then gives a global (time and frequency) estimation of dissimilarity.
The frequency mean spectrum and the amplitude envelope needed for computing respectively diffspec
and diffenv are automatically generated. They can be controlled through wl, msmooth and ksmooth
arguments respectively.
See examples below and examples in diffspec and diffenv for implications on the results.

Value

A single value varying between 0 and 1 is returned. The value has no unit.

Note

This method can be used as a relative distance estimation between different waves.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Sueur, J., Pavoine, S., Hamerlynck, O. & Duvail, S. (2008) - Rapid acoustic survey for biodiversity
appraisal. PLoS ONE, 3(12): e4065.

See Also

diffspec, diffenv

Examples

data(tico) ; tico <- tico@left
data(orni) ; orni <- orni@left
selection in tico to have two waves of similar duration (length)
tico <- tico[1:length(orni)]
diffwave(tico,orni,f=22050)
changing the frequency parameter (wl)
diffwave(tico,orni,f=22050,wl=1024)
changing the temporal parameter (msmooth)
diffwave(tico,orni,f=22050,msmooth=c(20,0))

discrets 59

discrets Time series discretisation

Description

This function transforms a numeric (time) series into a sequence of symbols

Usage

discrets(x, symb = 5, collapse = TRUE, plateau=1)

Arguments

x a vector, a matrix (first column), an object of class ts, Sample (left channel),
or Wave (left channel).

symb the number of symbols used for the discretisation, can be set to 3 or 5 only.

collapse logical, if TRUE, the symbols are pasted in a character string of length 1.

plateau a numeric vector of length 1 taking the values 1 or 2 only. See details.

Details

The function partitions the numeric (time) series into a sequence of finite number of symbols. These
symbols result of the comparaison of each series value with its temporal neighbours.
They are two discretisations available:
when symb is set to 3, each value will be replaced by either:
- I if the series is Increasing,
- D if the series is Decreasing,
- F if the series remains Flat,
when symb is set to 5, each value will be replaced by either:
- I if the series is Increasing,
- D if the series is Decreasing,
- F if the series remains Flat,
- P if the series shows a Peak,
- T if the series shows a Trough.

The argument plateau can be used to control the way a plateau is encoded. A plateau is an el-
evated flat region that can be either considered a ’flat peak’ encoded as PF...FP (plateau = 1) or
as an increase, a flat region and a decrease encoded as IF...FD (plateau = 1. The default value
(plateau = 1) refers to Cazelles et al. (2004).

Value

A character string of length 1 if collapse is TRUE. Otherwise, a character string of length n-2 if
symbol=5 (the first and last values cannot be replaced with a symbol) or n-1 if symbol=3 (the first
value cannot be replaced with a symbol.)

60 drawenv

Author(s)

Jerome Sueur, improved by Laurent Lellouch

References

Cazelles, B. 2004 Symbolic dynamics for identifying similarity between rhythms of ecological time
series. Ecology Letters, 7: 755-763.

See Also

symba

Examples

a random variable
discrets(rnorm(30))
discrets(rnorm(30),symb=3)
a frequency spectrum
data(tico)
spec1<-spec(tico,f=22050,at=0.2,plot=FALSE)
discrets(spec1[,2])

drawenv Draw the amplitude envelope of a time wave

Description

This function lets the user modifying the amplitude envelope of a time wave by drawing it with the
graphics device

Usage

drawenv(wave, f, channel = 1, n = 20, plot = FALSE, listen = FALSE, output = "matrix")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

n the maximum number of points to draw the new envelope. Valid values start at
1.

plot if TRUE returns the oscillogram of the new time wave (by default FALSE).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

drawfilter 61

Details

The function first plots an oscillogram view of wave.
The user has then to choose points on the positive side of the y-axis (amplitude). The junction of
these points will draw a new amplitude envelope.
The order of points along the x-axis (time) is not important but points cannot be cancelled. When
this process is finished the new time wave is returned in the console or as an oscillogram in a second
graphics device if plot is TRUE.
The function uses locator.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

setenv, env, synth

Examples

Not run:
a<-synth(d=1,f=22050,cf=1000)
drawenv(a,f=22050,plot=TRUE)
choose points on the oscillogram view to draw a new enveloppe
stop (ESC on Windows; right mouse button on Linux)
check the result on the second graphics device opened thanks to plot=TRUE

End(Not run)

drawfilter Draw the amplitude profile of a frequency filter

Description

This function lets the user drawing the amplitude profile of a frequency filter.

Usage

drawfilter(f, n = 256, continuous = TRUE, discrete = TRUE)

62 drawfilter

Arguments

f a numeric vector of length 1 for the sampling frequency of the object to be
filtered (in Hz).

n a numeric vector of length 1 for the length (i.e. number of points) of the filter.
By default = 256 to fit with a FIR with wl = 512.

continuous a logical (TRUE by default) to draw a continuous filter.

discrete a logical (TRUE by default) to draw a discrete filter.

Details

If the same frequency of a discrete filter is selected twice then the sum of the amplitudes of the
two selections is used. If both arguments continuous and discrete are set to TRUE and if fre-
quencies selected overlap between the two filters then only the frequencies of the discrete filter are
considered.

Value

The function returns a two-column matrix, the first column is the frequency in kHz and the second
column is the amplitude of the filter.

Note

This function can be used to prepare bandpass or bandstop custom filters to be used with fir and
ffilter. See examples.

Author(s)

Laurent Lellouch

See Also

fir, squarefilter, combfilter, ffilter, drawenv

Examples

Not run:
f <- 8000
a <- noisew(f=f, d=1)
bandpass continuous and discrete
cont.disc <- drawfilter(f=f/2)
a.cont.disc <- fir(a, f=f, custom=cont.disc)
spectro(a.cont.disc, f=f)
bandpass continuous only
cont <- drawfilter(f=f/2, discrete=FALSE)
a.cont <- fir(a, f=f, custom=cont)
spectro(a.cont, f=f)
bandstop continuous only
cont.stop <- drawfilter(f=f/2, discrete=FALSE)
a.cont.stop <- fir(a, f=f, custom=cont.stop, bandpass=FALSE)
spectro(a.cont.stop, f=f)

duration 63

bandpass discrete only
disc <- drawfilter(f=f/2, continuous=FALSE)
a.disc <- fir(a, f=f, custom=disc, bandpass=FALSE)
spectro(a.disc, f=f)

End(Not run)

duration Duration of a time wave

Description

Returns the duration (in second) of a time wave

Usage

duration(wave, f, channel=1)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

Value

A numeric vector of length 1 returning the duration in second.

Author(s)

Jerome Sueur

Examples

data(tico)
duration(tico)

64 dynoscillo

dynoscillo Dynamic oscillogram

Description

This graphical function displays a time wave as an windowed oscillogram.

Usage

dynoscillo(wave, f, channel = 1, wd = NULL, wl = NULL, wnb = NULL, title = TRUE, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wd a numerical vector, duration of the window (in seconds)

wl a numerical vector, length of the window (in number of points).

wnb a numerical vector, number of windows (no unit).

title a logical, if TRUE displays a title with information regarding window size and
number.

... other plot graphical parameters.

Details

The arguments wd, wl and wn have to be used isolated, not in conjunction. They basically do the
same, ie they set the duration of the zooming window that is slided along the signal. For instance,
for a 5 seconds sound with a sampling rate (f) at 44.1 kHz, wl = 4096 is equivalent to wd = 4096 /
44100 = 0.093 s and equivalent to wnb = 5*4096 / 44100 = 53.

Note

This function requires the package rpanel.

Author(s)

Jerome Sueur

See Also

oscillo, oscilloST, dynspec.

dynspec 65

Examples

Not run:
require(rpanel)
data(tico)
dynoscillo(tico, wn=4)
End(Not run)

dynspec Dynamic sliding spectrum

Description

This function plots dynamically a sliding spectrum along a time wave. This basically corresponds
to a short-term Fourier transform.

Usage

dynspec(wave, f, channel = 1, wl = 512, wn = "hanning", zp = 0,
ovlp = 0, fftw = FALSE, norm = FALSE, dB = NULL, dBref = NULL, plot = TRUE,
title = TRUE, osc = FALSE,
tlab = "Time (s)", flab = "Frequency (kHz)",
alab = "Amplitude", alim = NULL, flim = c(0, f/2000),
type = "l", from = NULL, to = NULL, envt = NULL,
msmooth = NULL, ksmooth = NULL, colspec = "black",
coltitle = "black", colbg = "white", colline = "black",
colaxis = "black", collab = "black", cexlab = 1,
fontlab = 1, colwave = "black",
coly0 = "lightgrey", colcursor = "red", bty = "l")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl if at is not null, length of the window for the analysis (even number of points,
by defaults = 512).

wn window name, see ftwindow (by default "hanning").

zp zero-padding (even number of points), see Details.

ovlp overlap between two successive windows (in %).

fftw if TRUE calls the function FFT of the library fftw. See Notes of the spectro.

norm logical, if TRUE compute a normalised sliding spectrum.

dB a character string specifying the type dB to return: "max0" for a maximum dB
value at 0, "A", "B", "C", "D", and "ITU" for common dB weights.

66 dynspec

dBref a dB reference value when dB is not NULL. NULL by default but should be set to
2*10e-5 for a 20 microPa reference (SPL).

plot logical, if TRUE plots in an ew graphics device the successive spectra sliding
along the time wave (by default TRUE).

title logical, if TRUE adds a title with the time position of the current spectrum along
the time wave.

osc logical, if TRUE plots an oscillogram beneath the sliding spectrum with a cursor
showing the position of the current spectrum (by default FALSE).

tlab title of the time axis.
flab title of the frequency axis.
alab title of the amplitude axis.
flim range of frequency axis.
alim range of amplitude axis.
type type of plot that should be drawn for the sliding spectrum. See plot for details

(by default "l" for lines).
from start mark where to compute the sliding spectrum (in s).
to end mark where to compute the sliding spectrum (in s).
envt the type of envelope to be plooted: either "abs" for absolute amplitude envelope

or "hil" for Hilbert amplitude envelope. See env.
msmooth when env is not NULL, a vector of length 2 to smooth the amplitude envelope with

a mean sliding window. The first component is the window length (in number
of points). The second component is the overlap between successive windows
(in %). See env.

ksmooth when env is not NULL, kernel smooth via kernel. See env.
colspec colour of the sliding spectrum.
coltitle if title is TRUE, colour of the title.
colbg background colour.
colline colour of axes line.
colaxis colour of the axes.
collab colour of axes title.
cexlab character size for axes title.
fontlab font for axes title.
colwave colour of the oscillogram or of the envelope (only when osc is TRUE).
coly0 colour of the y=0 line (only when osc is TRUE).
colcursor colour of oscillogram cursor (only when osc is TRUE).
bty the type of box to be drawn around the oscillogram (only when osc is TRUE).

Details

Use the slider panel to move along the time wave.
Use the argument norm if you wish to have each spectrum normalised, i.e. with values between 0
and 1 or maximised to 0 dB when dB is TRUE.
The function requires the package rpanel that is based on the package tcltk.

dynspectro 67

Value

This function returns a list of three items:

time a numeric vector corresponding to the time axis.

freq a numeric vector corresponding to the frequency axis.

amp a numeric matrix corresponding to the amplitude values. Each column is a
Fourier transform of length wl/2.

Note

This function is very similar to a spectrogram. See the Details of spectro for some information
regarding the short term Fourier transform.

Author(s)

Jerome Sueur and Caroline Simonis

See Also

spectro, spectro3D, wf, spec, dynspectro, fft, oscillo, env.

Examples

Not run:
data(sheep)
require(rpanel)
dynspec(sheep,f=8000,wl=1024,ovlp=50,osc=TRUE)

End(Not run)

dynspectro Dynamic sliding spectrogramn

Description

This function plots dynamically a sliding spectrogram along a time wave.

Usage

dynspectro(wave, f, channel = 1, slidframe = 10,
wl = 512, wn = "hanning", zp = 0, ovlp = 75,
fftw = FALSE, dB = TRUE, plot = TRUE,
title = TRUE, osc = FALSE,
tlab = "Time (s)", flab = "Frequency (kHz)", alab = "Amplitude",
from = NULL, to = NULL,
collevels = NULL, palette = spectro.colors,
envt = NULL, msmooth = NULL, ksmooth = NULL,

68 dynspectro

coltitle = "black", colbg = "white", colline = "black",
colaxis = "black", collab = "black", cexlab = 1,
fontlab = 1, colwave = "black",
coly0 = "lightgrey", colcursor = "red", bty = "l")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

slidframe size of the sliding frame (in percent of the wave duration).

wl if at is not null, length of the window for the analysis (even number of points,
by defaults = 512).

wn window name, see ftwindow (by default "hanning").

zp zero-padding (even number of points), see Details.

ovlp overlap between two successive windows (in %).

fftw if TRUE calls the function FFT of the library fftw. See Notes of the spectro.

dB a logical, if TRUE then uses dB values

plot logical, if TRUE plots in an ew graphics device the successive spectrograms slid-
ing along the time wave (by default TRUE).

title logical, if TRUE adds a title with the time position of the current spectrogram
along the time wave.

osc logical, if TRUE plots an oscillogram beneath the sliding spectrogram with a
cursor showing the position of the current spectrum (by default FALSE).

tlab title of the time axis.

flab title of the frequency axis.

alab title of the amplitude axis.

from start mark where to compute the sliding spectrogram (in s).

to end mark where to compute the sliding spectrogram (in s).

collevels a set of levels which are used to partition the amplitude range of the spectrogram.

palette a color palette function to be used to assign colors in the plot.

envt the type of envelope to be plooted: either "abs" for absolute amplitude envelope
or "hil" for Hilbert amplitude envelope. See env.

msmooth when env is not NULL, a vector of length 2 to smooth the amplitude envelope with
a mean sliding window. The first component is the window length (in number
of points). The second component is the overlap between successive windows
(in %). See env.

ksmooth when env is not NULL, kernel smooth via kernel. See env.

coltitle if title is TRUE, colour of the title.

colbg background colour.

dynspectro 69

colline colour of axes line.
colaxis colour of the axes.
collab colour of axes title.
cexlab character size for axes title.
fontlab font for axes title.
colwave colour of the oscillogram or of the envelope (only when osc is TRUE).
coly0 colour of the y=0 line (only when osc is TRUE).
colcursor colour of oscillogram cursor (only when osc is TRUE).
bty the type of box to be drawn around the oscillogram (only when osc is TRUE).

Details

Use the slider panel to move along the time wave.
The function requires the package rpanel that is based on the package tcltk.
The function is mainly written for inspecting long sounds.
The function is based on image for fast display when spectro is based on filled.contour. Dis-
playing the amplitude envelope with the argument envt can slow down significantly the display.

Value

This function returns a list of three items:

time a numeric vector corresponding to the time axis.
freq a numeric vector corresponding to the frequency axis.
amp a numeric matrix corresponding to the amplitude values. Each column is a

Fourier transform of length wl/2.

Note

This function is very similar to a spectrogram. See the Details of spectro for some information
regarding the short term Fourier transform.

Author(s)

David Pinaud and Jerome Sueur

See Also

spectro, spectro3D, wf, spec, dynspec, fft, oscillo, env.

Examples

Not run:
data(sheep)
require(rpanel)
dynspectro(sheep, ovlp=95, osc=TRUE)

End(Not run)

70 echo

echo Echo generator

Description

This function generate echoes of a time wave.

Usage

echo(wave, f, channel = 1, amp, delay, plot = FALSE,
listen = FALSE, output = "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

amp a vector describing the relative amplitude of the successive echoes. Each value
of the vector should be in [0,1]

delay a vector describing the time delays of the successive echoes from the beginning
of wave (in s.)

plot logical, if TRUE returns an oscillographic plot of the wave modified (by default
FALSE).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

Details

amp and delay should strictly have the same length corresponding to the number of desired echoes.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Note

This function is based on a convolution (convolve) between the input wave and a pulse echo filter.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

env 71

References

Stoddard, P. K. (1998). Application of filters in bioacoustics. In: Hopp, S. L., Owren, M. J. and
Evans, C. S. (Eds), Animal acoustic communication. Springer, Berlin, Heidelberg,pp. 105-127.

See Also

synth

Examples

generation of the input wave
a <- synth(f=11025,d=1,cf=2000,shape="tria",am=c(50,10),fm=c(1000,10,1000,0,0))
generation of three echoes
with respectively a relative amplitude of 0.8, 0.4, and 0.2
and with a delay of 1s, 2s, and 3s from the beginning of the input wave
aecho <- echo(a,f=11025,amp=c(0.8,0.4,0.2),delay=c(1,2,3))
another echo with time delays overlapping with the input wave
aecho <- echo(a,f=11025,amp=c(0.4,0.2,0.4),delay=c(0.6,0.8,1.5))

env Amplitude envelope of a time wave

Description

This function returns the absolute or Hilbert amplitude envelope of a time wave.

Usage

env(wave, f, channel = 1, envt = "hil",
msmooth = NULL, ksmooth = NULL, ssmooth = NULL,
asmooth = NULL,
fftw = FALSE, norm = FALSE,
plot = TRUE, k = 1, j = 1, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

envt the type of envelope to be returned: either "abs" for absolute amplitude envelope
or "hil" for Hilbert amplitude envelope. See Details section.

msmooth a vector of length 2 to smooth the amplitude envelope with a mean sliding win-
dow. The first component is the window length (in number of points). The
second component is the overlap between successive windows (in %). See ex-
amples.

72 env

ksmooth kernel smooth via kernel. See examples.

ssmooth length of the sliding window used for a sum smooth.

asmooth length of the sliding window used for an autocorrelation smooth.

fftw if TRUE calls the function FFT of the library fftw for faster computation for the
Hilbert amplitude envelope (envt="hil") and/or for kernell smoothing (ksmooth).

norm a logical, if TRUE the amplitude of the envelope is normalised between 0 and 1.

plot logical, if TRUE returns a plot of wave envelope (by default TRUE).

k number of horizontal sections when plot is TRUE (by default =1).

j number of vertical sections when plot is TRUE (by default =1).

... other oscillo graphical parameters.

Details

When envt is set as "abs", the amplitude envelope returned is the absolute value of wave.
When envt is set as "hil", the amplitude envelope returned is the modulus (Mod) of the analytical
signal of wave obtained through the Hilbert transform (hilbert).

Value

Data are returned as one-column matrix when plot is FALSE.

Note

Be aware that smoothing with either msmooth or ksmooth changes the original number of points
describing wave.

Author(s)

Jerome Sueur. Implementation of ’fftw’ argument by Jean Marchal and Francois Fabianek. Imple-
mentation of ’asmooth’ by Thibaut Marin-Cudraz.

See Also

oscillo,hilbert

Examples

data(tico)
Hilbert amplitude envelope
env(tico)
absolute amplitude envelope
env(tico, envt="abs")
smoothing with a 10 points and 50% overlaping mean sliding window
env(tico, msmooth=c(10,50))
smoothing kernel
env(tico, ksmooth=kernel("daniell",10))
sum smooth
env(tico, ssmooth=50)

export 73

autocorrelation smooth
env(tico, asmooth=50)
overplot of oscillographic and envelope representations
oscillo(tico)
par(new=TRUE)
env(tico, colwave=2)

export Export sound data

Description

Export sound data as a text file that can be read by a sound player like ’Goldwave’

Usage

export(wave, f = NULL, channel = 1, filename = NULL, header=TRUE, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

filename name of the new file. (by default the name of wave).

header either a logical or a character vector, if TRUE add a header to be read by Gold-
wave, if FALSE does not add any header, if a character vector add the character
vector as a header.

... other write.table parameters.

Details

Creates a new text file with a header describing the main features of the sound (wave). For instance,
for a 2 s sound with a sampling frequency of 8000 Hz, the header will be: [ASCII 8000Hz, Chan-
nels: 1, Samples: 160000, Flags: 0]. This type of file can be read by sound players like Goldwave
(http://www.goldwave.com/).

Author(s)

Jerome Sueur <sueur@mnhn.fr>

Examples

a<-synth(f=8000,d=2,cf=2000,plot=FALSE)
export(a,f=8000)
unlink("a.txt")

http://www.goldwave.com/

74 fadew

fadew Fade in and fade out of a time wave

Description

This function applies a “fade in” and/or a “fade out” to a time wave following a linear, exponential
or cosinus-like shape.

Usage

fadew(wave, f, channel = 1, din = 0, dout = 0, shape = "linear", plot = FALSE,
listen = FALSE, output = "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

din fade in duration.

dout fade out duration.

shape fade shape, "linear", "exp" for exponential, "cos" for cosinus-like, (by de-
fault "linear").

plot logical, if TRUE returns an oscillographic plot of the wave modified (by default
FALSE).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

oscillo, addsilw, cutw, deletew,mutew, pastew, revw, zapsilw

fbands 75

Examples

a<-noisew(d=5,f=4000)
op<-par(mfrow=c(3,1))
fadew(a,f=4000,din=1,dout=2,plot=TRUE,title="Linear",cexlab=0.8)
fadew(a,f=4000,din=1,dout=2,shape="exp",plot=TRUE,title="Exponential shape",

colwave="blue",coltitle="blue",cexlab=0.8)
fadew(a,f=4000,din=1,dout=2,shape="cos",plot=TRUE,title="Cosinus-like shape",

colwave="red",coltitle="red",cexlab=0.8)
par(op)

fbands Frequency bands plot

Description

This graphical function returns a frequency spectrum as a bar plot.

Usage

fbands(spec, f = NULL, bands = 10, width = FALSE, mel = FALSE, plot = TRUE,
xlab = NULL, ylab = "Relative amplitude", ...)

Arguments

spec a data set resulting of a spectral analysis obtained with spec or meanspec. Can
be in dB.

f sampling frequency of spec (in Hz). Not requested if the first column of spec
contains the frequency axis.

bands a numeric vector. If vector of length 1, then sets the number of bands dividing
in equal parts the spectrum. If of length > 1, then takes the values as kHz limits
of the bands dividing the spectrum. These bands can be of different size. See
details and examples.

width logical, if TRUE and that bands is an irregular series of values, then the width of
the bands will be proportional to the frequency limits defined in bands.

mel a logical, if TRUE the (htk-)mel scale is used.

plot logical, if TRUE, a plot showing the peaks is returned.

xlab label of the x-axis.

ylab label of the y-axis.

... other plot graphical parameters.

76 fbands

Details

The function proceeds as follows

• divides the spectrum in bands. The limits of the bands are set with the argument bands. There
are two options:

– you set a number of bands with equal size by giving a single value to bands. For instance,
setting bands to a value of 10 will slice the spectrum in 10 equal parts and return 10 local
peaks.

– you set the limits of the bands. This is achieve by giving a numeric vector to bands.
The limits can follow a regular or irregular series. For instance attributing the vector
c(0,2,4,8) will generate the following bands [0,2[, [2,4[, [4,8] kHz. Be aware that the last
value should not exceed half the sampling frequency used to obtain the spectrum spec.

• uses the function barplot.

Value

A two-column matrix, the first column corresponding to the frequency values (x-axis, mean of the
bars limits) and the second column corresponding to height values (y-axis) of the bars.

Note

The value below bars is the mean between the corresponding frequency limits.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

See Also

meanspec, spec, barplot.

Examples

data(sheep)
spec <- meanspec(sheep, f=8000, plot=FALSE)
default plot
fbands(spec)
setting a specific number of bands
fbands(spec, bands=6)
#setting specific regular bands limits
fbands(spec, bands=seq(0,4,by=0.25))
some plot tuning
op <- par(las=1)
fbands(spec, bands=seq(0,4,by=0.1),

horiz=TRUE, col=heat.colors(41),
xlab="", ylab="",
cex.axis=0.75, cex.names = 0.75,
axes=FALSE)

par(op)
showing or not the width of the bands

fdoppler 77

oct <- octaves(440,3)/1000
op <- par(mfrow=c(2,1))
fbands(spec, bands=oct, col="blue")
fbands(spec, bands=oct, width = TRUE, col="red")
par(op)
kind of horizontal zoom
op <- par(mfrow=c(2,1))
fbands(spec, bands=seq(0,4,by=0.2), col=c(rep(1,10),

rep("orange",5),rep(1,5)), main="all frequency range")
fbands(spec, bands=seq(2,3,by=0.2),

col="orange", main="a subset or zoom in")
par(op)
kind of dynamic frequency bands
specs <- dynspec(sheep, f=8000, plot= FALSE)$amp
out <- apply(specs, f=8000, MARGIN=2,

FUN = fbands, bands = seq(0,4,by=0.2),
col = 1, ylim=c(0,max(specs)))

mel scale
require(tuneR)
mel <- melfcc(sheep, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
melspec.mean <- apply(mel$aspectrum, MARGIN=2, FUN=mean)
melspec.mean <- melspec.mean/max(melspec.mean) # [0,1] scaling
fbands(melspec.mean, f=8000, bands=8)

fdoppler Doppler effect

Description

This function computes the altered frequency of a moving source due to the Doppler effect.

Usage

fdoppler(f, c = 340, vs, vo = 0, movs = "toward", movo = "toward")

Arguments

f original frequency produced by the source (in Hz or kHz)

c speed of sound in meters/second.

vs speed of the source in meters/second.

vo speed of the observer in meters/second. The observer is static by default i.e. vo
= 0

movs movement direction of the source in relation with observer position, either "toward"
(by default) or "away".

movo movement direction of the observer in relation with the source position, either
"toward" (by default, but be aware that the observer is static by default) or
"away".

78 fdoppler

Details

The altered frequency f ’ is computed according to:

f ′ = f × c± vo
c± vs

with f = original frequency produced by the source (in Hz or kHz),
vs = speed of the source,
vo = speed of the observer.

Value

The altered frequency is returned in a vector.

Note

You can use wasp to have exact values of c. See examples.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

wasp

Examples

a 400 Hz source moving toward or away from the observer at 85 m/s
fdoppler(f=400,vs=85)
[1] 533.3333
fdoppler(f=400,vs=85,movs="away")
[1] 320
use wasp() if you wish to have exact sound speed at a specific temperature
fdoppler(f=wasp(f=400,t=25)$c, vs=85)
[1] 461.8667
Doppler effect at different source speeds
f<-seq(1,10,by=1); lf<-length(f)
v<-seq(10,300,by=20); lv<-length(v)
res<-matrix(numeric(lf*lv),ncol=lv)
for(i in 1:lv) res[,i]<-fdoppler(f=f,vs=v[i])
op<-par(bg="lightgrey")
matplot(x=f,y=res,type="l",lty=1,las=1,col= spectro.colors(lv),
xlab="Source frequency (kHz)", ylab="Altered frequency (kHz)")
legend("topleft",legend=paste(as.character(v),"m/s"),
lty=1,col= spectro.colors(lv))
title(main="Doppler effect at different source speeds")
par(op)

ffilter 79

ffilter Frequency filter

Description

This function filters out a selected frequency section of a time wave (low-pass, high-pass, low-stop,
high-stop, bandpass or bandstop frequency filter).

Usage

ffilter(wave, f, channel = 1, from = NULL, to = NULL, bandpass = TRUE,
custom = NULL, wl = 1024, ovlp = 75, wn = "hanning", fftw = FALSE,
rescale=FALSE, listen=FALSE, output="matrix")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

from start frequency (in Hz) where to apply the filter.

to end frequency (in Hz) where to apply the filter.

bandpass if TRUE a band-pass filter is applied between from and to, if FALSE a band-stop
filter is applied between from and to (by default TRUE).

custom a vector describing the frequency response of a custom filter. This can be man-
ually generated or obtained with spec and meanspec. The length of the vector
should be half the length of wl. See examples.

wl window length for the analysis (even number of points).

ovlp overlap between successive FFT windows (in %).

wn window name, see ftwindow (by default "hanning").

fftw if TRUE calls the function FFT of the library fftw. See Notes of the spectro.

rescale a logical, if TRUE then the sample values of new wave (output) are rescaled
according to the sample values of wave (input).

listen a logical, if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"audioSample" or "ts".

Details

A short-term Fourier transform is first applied to the signal (see spectro), then the frequency filter
is applied and the new signal is eventually generated using the reverse of the Fourier Transform
(istft).
There is therefore neither temporal modifications nor amplitude modifications.

80 field

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur

See Also

afilter,lfs,fir, preemphasis, combfilter, bwfilter

Examples

a<-noisew(f=8000,d=1)
low-pass
b<-ffilter(a,f=8000,to=1500)
spectro(b,f=8000,wl=512)
high-pass
c<-ffilter(a,f=8000,from=2500)
spectro(c,f=8000,wl=512)
band-pass
d<-ffilter(a,f=8000,from=1000,to=2000)
spectro(d,f=8000,wl=512)
band-stop
e<-ffilter(a,f=8000,from=1500,to=2500,bandpass=FALSE)
spectro(e,f=8000,wl=512)
custom
myfilter1<-rep(c(rep(0,64),rep(1,64)),4)
g<-ffilter(a,f=8000,custom=myfilter1)
spectro(g,f=8000)

field Near field and far field limits

Description

This function helps in knowing whether you are working in the near or far field.

Usage

field(f, d)

Arguments

f frequency (Hz)

d distance from the sound source (m)

field 81

Details

Areas very close to the sound source are in the near-field where the contribution of particle velocity
to sound energy is greater thant that of sound pressure and where these components are not in phase.
Sound propagation properties are also different near or far from the source. It is therefore important
to know where the microphone was from the source.
To know this, the product k*d is computed according to:

k × d =
f

c
× d

with d = distance from the source (m), f = frequency (Hz) and c = sound celerity (m/s).
If k*d is greatly inferior 1 then the microphone is in the near field.
The decision help returned by the function follows the rule:
far field:

k × d > 1

between near and far field limits:
0.1 ≤ k × d ≤ 1

near field:
k × d < 0.1

.

Value

A list of two values is returned:

kd the numeric value k*d used to take a decision

d a character string giving the help decision.

Note

This function works for air-borne sound only.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

Examples

1 kHz near field at 1 cm from the source
field(f=1000,d=0.01)
playing with distance from source and sound frequency
op<-par(bg="lightgrey")
D<-seq(0.01,0.5,by=0.01); nD<-length(D)
F<-seq(100,1000,by=25); nF<-length(F)
a<-matrix(numeric(nD*nF),nrow=nD)
for(i in 1:nF) a[,i]<-field(f=F[i],d=D)$kd
matplot(x=D,y=a,type="l",lty=1,col= spectro.colors(nF),

xlab="Distance from the source (m)", ylab="k*d")
title("Variation of the product k*d with distance and frequency")

82 fir

text(x=c(0.4,0.15),y=c(0.02,1), c("Near Field","Far Field"),font=2)
legend(x=0.05,y=1.4,c("100 Hz","1000 Hz"),lty=1,

col=c(spectro.colors(nF)[1],spectro.colors(nF)[nF]),bg="grey")
abline(h=0.1)
par(op)

fir Finite Impulse Response filter

Description

This function is a FIR filter that filters out a selected frequency section of a time wave (low-pass,
high-pass, low-stop, high-stop, bandpass or bandstop frequency filter).

Usage

fir(wave, f, channel = 1, from = NULL, to = NULL, bandpass = TRUE, custom = NULL,
wl = 512, wn = "hanning", rescale=FALSE, listen = FALSE, output = "matrix")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

from start frequency (in Hz) where to apply the filter.

to end frequency (in Hz) where to apply the filter.

bandpass if TRUE a band-pass filter is applied between from and to, if not NULL a band-stop
filter is applied between from and to (by default NULL).

custom a vector describing the frequency response of a custom filter. This can be man-
ually generated or obtained with spec and meanspec. wl is no more required.
See examples.

wl window length of the impulse filter (even number of points).

wn window name, see ftwindow (by default "hanning").

rescale a logical, if TRUE then the sample values of new wave (output) are rescaled
according to the sample values of wave (input).

listen a logical, if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

Details

This function is based on the reverse of the Fourier Transform (fft) and on a convolution (convolve)
between the wave to be filtered and the impulse filter.

fma 83

Value

A new wave is returned. The class of the returned object is set with the argument output.

Author(s)

Jerome Sueur

References

Stoddard, P. K. (1998). Application of filters in bioacoustics. In: Hopp, S. L., Owren, M. J. and
Evans, C. S. (Eds), Animal acoustic communication. Springer, Berlin, Heidelberg,pp. 105-127.

See Also

ffilter, bwfilter, preemphasis, lfs, afilter

Examples

a<-noisew(f=8000,d=1)
low-pass
b<-fir(a,f=8000,to=1500)
spectro(b,f=8000)
high-pass
c<-fir(a,f=8000,from=2500)
spectro(c,f=8000)
band-pass
d<-fir(a,f=8000,from=1000,to=2000)
spectro(d,f=8000)
band-stop
e<-fir(a,f=8000,from=1500,to=2500,bandpass=FALSE)
spectro(e,f=8000)
custom filter manually generated
myfilter1<-rep(c(rep(0,32),rep(1,32)),4)
g<-fir(a,f=8000,custom=myfilter1)
spectro(g,f=8000)
custom filter generated using spec()
data(tico)
myfilter2<-spec(tico,f=22050,at=0.7,wl=512,plot=FALSE)
b<-noisew(d=1,f=22050)
h<-fir(b,f=22050,custom=myfilter2)
spectro(h,f=22050)

fma Frequency modulation analysis

Description

This function computes the Fourier analysis of the instantaneous frequency of a time wave. This
allows to detect periodicity in frequency modulation.

84 fma

Usage

fma(wave, f, channel = 1, threshold = NULL, plot = TRUE, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

threshold amplitude threshold for signal detection (in %).

plot logical, if TRUE the spectrum of the instantaneous frequency (by default TRUE).

... other spec parameters.

Details

This function is based on ifreq and spec.
The instantaneous frequency of wave is first computed and the spectrum of this frequency modula-
tion is then processed. All env and spec arguments can be set up.

Value

If plot is FALSE, fma returns a numeric vector corresponding to the computed spectrum. If peaks
is not NULL, fma returns a list with two elements:

spec the spectrum computed

peaks the peaks values (in kHz).

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

ifreq, hilbert, spec, ama

Examples

a sound with a 1 kHz sinusoid FM
a<-synth(d=1, f=8000, cf=1500, fm=c(1000,1000,0,0,0), output="Wave")
fma(a)

fpeaks 85

fpeaks Frequency peak detection

Description

This function searches for peaks of a frequency spectrum.

Usage

fpeaks(spec, f = NULL,
nmax = NULL, amp = NULL, freq = NULL, threshold = NULL,
mel =FALSE,
plot = TRUE, title = TRUE,
xlab = NULL, ylab = "Amplitude",
labels = TRUE, digits = 2,
legend = TRUE, collab = "red", ...)

Arguments

spec a data set resulting of a spectral analysis obtained with spec or meanspec. Can
be in dB.

f sampling frequency of spec (in Hz). Not requested if the first column of spec
contains the frequency axis.

nmax maximal number of peaks detected. Overrides amp and freq. See details.
amp amplitude slope parameter, a numeric vector of length 2. Refers to the amplitude

slopes of the peak. The first value is the left slope and the second value is the
right slope. Only peaks with higher slopes than threshold values will be kept.
See details.

freq frequency threshold parameter (in Hz). If the frequency difference of two suc-
cessive peaks is less than this threshold, then the peak of highest amplitude will
be kept only. See details.

threshold amplitude threshold parameter. Only peaks above this threshold will be consid-
ered. See details.

mel a logical, if TRUE the (htk-)mel scale is used.
plot logical, if TRUE, a plot showing the peaks is returned.
title logical, if TRUE add the number of peaks detected as a plot title.
xlab label of the x-axis.
ylab label of the y-axis.
labels logical, if TRUE peak labels are plotted.
digits if labels is TRUE, the number of decimal places (round) for the peak labels.
legend logical, if TRUE a legend returning the different selection parameters (nmax, amp,

freq, threshold, threshold) is added to the plot.
collab labels color.
... other plot graphical parameters.

86 fpeaks

Details

Here are some details regarding the different selection parameters:

• nmax: this parameter is to be used if you wish to get a specific number of peaks. The peaks
selected are those with the highest slopes. It then does not work in conjunction with the other
parameters.

• freq: this parameter allows to remove from the selection successive peaks with a small fre-
quency difference. Imagine you have two successive peaks at 1200 Hz and 1210 Hz and at 0.5
and 0.25 in amplitude. If you set freq to 50 Hz, then only the first peak will be kept.

• amp: this parameter allows to remove from the selection peaks with low slopes. You can make
the selection on both slopes or on a single one. Imagine you have an asymetric peak with a
0.01 left slope and a 0.02 right slope. The peak will be discarded for the following settings:
both values higher than 0.02 (e.g. amp = c(0.03,0.04)), the first value higher than 0.01 (e.g.
amp = c(0.02,0.001)), the second value higher than 0.02 (e.g. amp = c(0.001,0.03)). If
you do not want apply the selection on one of the slope use 0. For instance, a selection on the
left slope only will be achieved with: amp = c(0.02,0).

• threshold: this parameter can be used to do a rough selection on the spectrum. Peaks with an
amplitude value (not a slope) lower than this threshold will be automatically discarded. This
can be useful when you want to remove peaks of a low-amplitude background noise.

Value

A two-column matrix, the first column corresponding to the frequency values (x-axis) and the sec-
ond column corresponding to the amplitude values (y-axis) of the peaks.

Note

You can also use fpeaks with other kind of spectrum, for instance a cepstral spectrum. See exam-
ples.

Author(s)

Jerome Sueur and Amandine Gasc

See Also

localpeaks, meanspec, spec

Examples

data(tico)
spec <- meanspec(tico, f=22050, plot=FALSE)
specdB <- meanspec(tico, f=22050, dB="max0", plot=FALSE)
all peaks
fpeaks(spec)
10 highest peaks
fpeaks(spec, nmax=10)
highest peak (ie dominant frequency)

ftwindow 87

fpeaks(spec, nmax=1)
peaks that are separated by more than 500 Hz
fpeaks(spec, freq=500)
peaks with a left slope higher than 0.1
fpeaks(spec, amp=c(0.1,0))
peaks with a right slope higher than 0.1
fpeaks(spec, amp=c(0,0.1))
peaks with left and right slopes higher than 0.1
fpeaks(spec, amp=c(0.1,0.1))
peaks above a 0.5 threshold
fpeaks(spec, threshold=0.5)
peaks of a dB spectrum with peaks showing slopes higher than 3 dB
fpeaks(specdB, amp=c(3,3))
comparing different parameter settings
meanspec(tico, f=22050)
col <- c("#ff000090","#0000ff75","#00ff00")
cex <- c(2,1.25,1.5)
pch <- c(19,17,4)
title(main="Peak detection \n (spectrum with values between 0 and 1)")
res1 <- fpeaks(spec, plot = FALSE)
res2 <- fpeaks(spec, amp=c(0.02,0.02), plot =FALSE)
res3 <- fpeaks(spec, amp=c(0.02,0.02), freq=200, plot = FALSE)
points(res1, pch=pch[1], col=col[1], cex=cex[1])
points(res2, pch=pch[2], col=col[2], cex=cex[2])
points(res3, pch=pch[3], col=col[3], cex=cex[3])
legend("topright", legend=c("all peaks","amp", "amp & freq"), pch=pch,
pt.cex=cex, col=col, bty="n")
example with a cepstral spectrum
data(sheep)
res <- ceps(sheep,f=8000,at=0.4,wl=1024,plot=FALSE)
fpeaks(res, nmax=4, xlab="Quefrency (s)")
melscale
require(tuneR)
mel <- melfcc(sheep, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
melspec.mean <- apply(mel$aspectrum, MARGIN=2, FUN=mean)
melspec.mean <- melspec.mean/max(melspec.mean) # [0,1] scaling
fpeaks(melspec.mean, nmax=4, f=8000, mel=TRUE)
fpeaks(melspec.mean, freq=4, f=8000, mel=TRUE) # freq in Hz!
fpeaks(melspec.mean, threshold=0.3, f=8000, mel=TRUE)
fpeaks(melspec.mean, amp=c(0.1,0.1), f=8000, mel=TRUE)

ftwindow Fourier transform windows

Description

Generates different Fourier Transform windows.

88 ftwindow

Usage

ftwindow(wl, wn = "hamming",
correction = c("none", "amplitude", "energy"))

Arguments

wl window length

wn window name: bartlett, blackman, flattop, hamming, hanning, or rectangle
(by default hamming).

correction a character vector of length 1 to apply an amplitude ("amplitude") or an energy
("energy") correction to the FT window. By default no correction is applied
("none").

Value

A vector of length wl.

Note

Try the example to see windows shape.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Harris, F.J., 1978. On the use of windows for harmonic analysis with the discrete Fourier Transform.
Proceedings of the IEEE, 66(1): 51-83.

See Also

covspectro, dfreq, meanspec, spec, spectro, spectro3D

Examples

a<-ftwindow(512)
b<-ftwindow(512,wn="bartlett")
c<-ftwindow(512,wn="blackman")
d<-ftwindow(512,wn="flattop")
e<-ftwindow(512,wn="hanning")
f<-ftwindow(512,wn="rectangle")
all<-cbind(a,b,c,d,e,f)
matplot(all,type="l",col=1:6,lty=1:6)
legend(legend=c("hamming","bartlett","blackman","flattop","hanning","rectangle"),
x=380,y=0.95,col=1:6,lty=1:6,cex=0.75)

fund 89

fund Fundamental frequency track

Description

This function estimates the fundamental frequency through a short-term cepstral transform.

Usage

fund(wave, f, channel = 1, wl = 512, ovlp = 0, fmax = f/2, threshold = NULL,
at = NULL, from = NULL, to = NULL,
plot = TRUE, xlab = "Time (s)", ylab = "Frequency (kHz)",
ylim = c(0, f/2000), pb = FALSE, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl if at is not null, length of the window for the analysis (even number of points,
by defaults = 512).

ovlp overlap between two successive windows (in %).

fmax the maximum frequency to detect (in Hz).

threshold amplitude threshold for signal detection (in %).

at position where the estimate the fundamental frequency (in s)

.

from start position where to compute the fundamental frequency (in s).

to end position to compute the fundamental frequency (in s).

plot logical, if TRUE plots the fundamental frequency modulations against time (by
default TRUE).

xlab title of the time axis (s).

ylab title of the frequency axis (Hz).

ylim the range of frequency values.

pb if TRUE returns a text progress bar in the console.

... other plot graphical parameters.

Value

When plot is FALSE, fund returns a two-column matrix, the first column corresponding to time in
seconds (x-axis) and the second column corresponding to to fundamental frequency in kHz (y-axis).
NA corresponds to pause sections in wave (see threshold).
No plot is produced when using at.

90 gammatone

Note

This function is based on ceps.

Author(s)

Jerome Sueur <sueur@mnhn.fr>.

References

Oppenheim, A.V. and Schafer, R.W. 2004. From frequency to quefrency: a history of the cepstrum.
Signal Processing Magazine IEEE, 21: 95-106.

See Also

cepstro, ceps, autoc

Examples

data(sheep)
estimate the fundamental frequency at a single position
fund(sheep, f=8000, fmax=300, at=1, plot=FALSE)
track the fundamental frequency along time
fund(sheep,f=8000,fmax=300,type="l")
with 50% overlap between successive sliding windows, time zoom and
amplitude filter (threshold)
fund(sheep,f=8000,fmax=300,type="b",ovlp=50,threshold=5,ylim=c(0,1),cex=0.5)
overlaid on a spectrogram
spectro(sheep,f=8000,ovlp=75,zp=16,scale=FALSE,palette=reverse.gray.colors.2)
par(new=TRUE)
fund(sheep,f=8000,fmax=300,type="p",pch=24,ann=FALSE,

xaxs="i",yaxs="i",col="black",bg="red",threshold=6)

gammatone Gammatone filter

Description

Generate gammatone filter in the time domain (impulse response).

Usage

gammatone(f, d, cfreq, n = 4, a = 1, p = 0, output = "matrix")

gammatone 91

Arguments

f sampling frequency (in Hz).

d duration (in s).

cfreq center frequency (in Hz).

n filter order (no unit).

a amplitude (linear scale, no unit).

p initial phase (in radians).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

Details

The gammatone function in the time domain (impulse response) is obtained with:

g(t) = a× tn−1 × e−2πβt × cos(2πcft+ ϕ)

with a the amplitude, t time, n the filter order, cf the center frequency, ϕ the initial phase.
The parameter β is the equivalent rectangular bandwidth (ERB) bandwidth which varies according
to the center frequency cf following:

β = 24.7× (4.37× cf

1000
+ 1)

Value

A wave is returned. The class of the returned object is set with the argument output.

Note

Use the FFT based function, as spec or meanspec, to get the filter in the frequency domain. See
examples.

Author(s)

Jerome Sueur

References

Holdsworth J, Nimmo-Smith I, Patterson R, Rice P (1988) Implementing a gammatone filter bank.
Annex C of the SVOS Final Report: Part A: The Auditory Filterbank, 1, 1-5.

See Also

melfilterbank

92 ggspectro

Examples

gammatone filter in the time domain (impulse response)
f <- 44100
d <- 0.05
res <- gammatone(f=f, d=d, cfreq=440, n=4)
time display
oscillo(res, f=f)
frequency display
spec(res, f=f)
generate and plot a bank of 32 filters from 500 to 10000 Hz
n <- 32
cfreq <- round(seq(500, 10000, length.out=n))
res <- matrix(NA, nrow=f*d/2, ncol=n)
for(i in 1:n){

res[,i] <- spec(gammatone(f=f, d=d, cfreq=cfreq[i]), f=f, dB="max0", plot=FALSE)[,2]
}
x <- seq(0,f/2,length.out=nrow(res))/1000
plot(x=x, y=res[,1],

xlim=c(0,14), ylim=c(-60,0),
type="l", col=2, las=1,
xlab="Frequency (kHz)", ylab="Relative amplitude (dB)")

for(i in 2:n) lines(x, res[,i], col=2)
use the frequency domain to filter a white noise input
here around the center frequency 2000 Hz
res <- gammatone(f=f, d=d, cfreq=2000, n=4)
gspec <- spec(res, f=f, plot=FALSE)[,2]
nw <- noisew(f=44100, d=1)
nwfilt <- fir(nw, f=44100, wl=length(gspec)*2, custom=gspec)
spectro(nwfilt, f=f)

ggspectro 2D-spectrogram of a time wave using ggplot2

Description

This function returns a ggplot object to draw a spectrogram with the package ggplot2. This is an
alternative to spectro.

Usage

ggspectro(wave, f, tlab = "Time (s)",
flab = "Frequency (kHz)", alab = "Amplitude\n(dB)\n", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

ggspectro 93

tlab label of the time axis.

flab label of the frequency axis.

alab label of the amplitude axis.

... other non-graphical arguments to be passed to spectro (wl, ovlp etc).

Details

This function return the fist layer (data and aesthetic mapping) of a ggplot2 plot.
See the example section to understand how to build a spectrogram and consult ggplot2 help to get
what you exactly need.
There is no way to plot the oscillogram as spectro does.

Value

A ggpot layer.

Note

This function requires ggplot2 package.

Author(s)

Jerome Sueur

References

Wickham H (2009) – ggplot2: elegant graphics for data analysis. UseR! Springer.

See Also

spectro, spectro3D, dynspec

Examples

Not run:
require(ggplot2)
first layer
v <- ggspectro(tico, ovlp=50)
summary(v)
using geom_tile
v + geom_tile(aes(fill = amplitude)) + stat_contour()
coordinates flip (interest?)
v + geom_tile(aes(fill = amplitude)) + stat_contour() + coord_flip()
using stat_contour
default (not nice at all)
v + stat_contour(geom="polygon", aes(fill=..level..))
set up to 30 color levels with the argument bins
(vv <- v + stat_contour(geom="polygon", aes(fill=..level..), bins=30))
change the limits of amplitude and NA values as transparent
vv + scale_fill_continuous(name="Amplitude\n(dB)\n", limits=c(-30,0), na.value="transparent")

94 H

Black-and-white theme
(vv + scale_fill_continuous(name="Amplitude\n(dB)\n", limits=c(-30,0),

na.value="transparent", low="white", high="black") + theme_bw())
Other colour scale (close to spectro() default output)
v + stat_contour(geom="polygon", aes(fill=..level..), bins=30)

+ scale_fill_gradientn(name="Amplitude\n(dB)\n", limits=c(-30,0),
na.value="transparent", colours = spectro.colors(30))

End(Not run)

H Total entropy

Description

This function estimates the total entropy of a time wave.

Usage

H(wave, f, channel = 1, wl = 512, envt="hil", msmooth = NULL, ksmooth = NULL)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl window length for spectral entropy analysis (even number of points). See sh.

envt the type of envelope to be used: either "abs" for absolute amplitude envelope or
"hil" for Hilbert amplitude envelope. See env.

msmooth a vector of length 2 to smooth the amplitude envelope with a mean sliding win-
dow. The first component is the window length (in number of points). The
second component is the overlap between successive windows (in %). See env.

ksmooth kernel smooth via kernel. See env.

Details

This function computes the product between the values obtained with sh and th functions.
This then gives a global (time and frequency) estimation of signal entropy.
The frequency mean spectrum and the amplitude envelope needed for computing respectively sh
and th are automatically generated. They can be controlled through wl and smooth arguments
respectively. See examples below and examples in sh and th for implications on the results.

Value

A single value varying between 0 and 1 is returned. The value has no unit.

hilbert 95

Note

The entropy of a noisy signal will tend towards 1 whereas the entropy of a pure tone signal will tend
towards 0.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Sueur, J., Pavoine, S., Hamerlynck, O. & Duvail, S. (2008) - Rapid acoustic survey for biodiversity
appraisal. PLoS ONE, 3(12): e4065.

See Also

sh, th, csh

Examples

data(orni)
H(orni,f=22050)
changing the spectral parameter (wl)
H(orni,f=22050,wl=1024)
changing the temporal parameter (msmooth)
H(orni,f=22050,msmooth=c(20,0))

hilbert Hilbert transform and analytic signal

Description

This function returns the analytic signal of a time wave through Hilbert transform.

Usage

hilbert(wave, f, channel = 1, fftw = FALSE)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

fftw if TRUE calls the function FFT of the library fftw for faster computation. See
Notes of the function spectro.

96 ifreq

Details

The analytic signal is useful to get the amplitude envelope (see argument henv of oscillo and the
instantaneous phase or frequency (see ifreq) of a time wave.

Value

hilbert returns the analytic signal as a complex matrix. The imaginary part of this matrix is the
Hilbert transform.

Note

To get the Hilbert component only, use Im(Hilbert(wave)).

Author(s)

Jonathan Lees <jonathan.lees@unc.edu>. Implementation of ’fftw’ argument by Jean Marchal
and Francois Fabianek.

References

Mbu Nyamsi, R. G., Aubin, T. & Bremond, J. C. 1994 On the extraction of some time dependent
parameters of an acoustic signal by means of the analytic signal concept. Its application to animal
sound study. Bioacoustics, 5: 187-203.

See Also

ifreq

Examples

a<-synth(f=8000, d=1, cf=1000)
aa<-hilbert(a, f=8000)

ifreq Instantaneous frequency

Description

This function returns the instantaneous frequency (and/or phase) of a time wave through the com-
putation of the analytic signal (Hilbert transform).

Usage

ifreq(wave, f, channel = 1, phase = FALSE, threshold = NULL,
plot = TRUE, xlab = "Time (s)", ylab = NULL,
ylim = NULL, type = "l", ...)

ifreq 97

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

phase if TRUE and plot is also TRUE plots the instantaneous phase instead of the in-
stantaneous frequency.

threshold amplitude threshold for signal detection (in %).

plot logical, if TRUE plots the instantaneous frequency or phase against time (by de-
fault TRUE).

xlab title of the x axis.

ylab title of the y axis.

ylim the range of y values.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot graphical parameters.

Details

The instantaneous phase is the argument of the analytic signal obtained throught the Hilbert trans-
form.
The instantaneous phase is then unwrapped and derived against time to get the instantaneous fre-
quency.
There may be some edge effects at both start and end of the time wave.

Value

If plot is FALSE, ifreq returns a list of two components:

f a two-column matrix, the first column corresponding to time in seconds (x-axis)
and the second column corresponding to instantaneous frequency in kHz (y-
axis).

p a two-column matrix, the first column corresponding to time in seconds (x-axis)
and the second column corresponding to wrapped instantaneous phase in radians
(y-axis).

Note

This function is based on the analytic signal obtained with the Hilbert transform (see hilbert).
The function requires the package signal.
The matrix describing the instantaneous phase has one more row than the one describing the instan-
taneous frequency.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

98 istft

References

Mbu Nyamsi, R. G., Aubin, T. & Bremond, J. C. 1994 On the extraction of some time dependent
parameters of an acoustic signal by means of the analytic signal concept. Its application to animal
sound study. Bioacoustics, 5: 187-203.

See Also

hilbert, zc

Examples

generate a sound with sine and linear frequency modulations
a<-synth(d=1, f=8000, cf=1500, fm=c(200,10,1000,0,0))
plot on a single graphical device the instantaneous frequency and phase
op<-par(mfrow=c(2,1))
ifreq(a,f=8000,main="Instantaneous frequency")
ifreq(a,f=8000,phase=TRUE,main="Instantaneous phase")
par(op)

istft Inverse of the short-term Fourier transform

Description

This function returns a wave object from a complex STFT matrix by computing the inverse of the
short-term Fourier transform (STFT)

Usage

istft(stft, f, wl, ovlp=75, wn="hanning", output = "matrix")

Arguments

stft a complex matrix resulting of a short-term Fourier transform.

f sampling frequency of the original wave object (in Hz)

wl FFT window length for the analysis (even number of points).

ovlp overlap between successive FFT windows (in %, by default 75%, see the Details
section).

wn character string specifying the FFT window name, see ftwindow (by default
"hanning").

output character string, the class of the object to return, either "matrix", "Wave",
"audioSample" or "ts".

istft 99

Details

The function is based on the inverse of the FFT (see fft) and on the overlap add (OLA) method.
The overlap percentage must satisfy the Perfect Reconstruction OLA-constraint. For the most win-
dows, this constraint is:

ovlp = 100× (1− 1

4× n
),

with n being a positive integer.
A default value is set to 75%. We suggest not to change it.

Value

A new wave is returned. The class of the returned object is set with the argument output.

Note

The stft input data must be complex.
This function is used by ffilter, lfs to respectively filter in frequency and shift in frequency a
sound.
The function can be used to reconstruct or modify a sound. See examples.

Author(s)

Original Matlab code by Hristo Zhivomirov (Technical University of Varna, Bulgaria), translated
and adapted to R by Jerome Sueur

See Also

spectro, ffilter, lfs

Examples

Not run:
STFT and iSTFT parameters
wl <- 1024
ovlp <- 75
reconstruction of the tico sound from the stft complex data matrix
data(tico)
data <- spectro(tico, wl=wl, ovlp=ovlp, plot=FALSE, norm=FALSE, dB=NULL, complex=TRUE)$amp
res <- istft(data, ovlp=ovlp, wn="hanning", wl=wl, f=22050, out="Wave")
spectro(res)
a strange frequency filter
n <- noisew(d=1, f=44100)
data <- spectro(n, f=44100, wl=wl, ovlp=ovlp, plot=FALSE, norm=FALSE, dB=NULL, complex=TRUE)$amp
data[64:192, 6:24] <- 0
nfilt <- istft(data, f=8000, wl=wl, ovlp=ovlp, output="Wave")
spectro(nfilt, wl=wl, ovlp=ovlp)

End(Not run)

100 itakura.dist

itakura.dist Itakuro-Saito distance

Description

Compare two distributions (e.g. two frequency spectra) by computing the Itakuro-Saito distance

Usage

itakura.dist(spec1, spec2, scale=FALSE)

Arguments

spec1 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

spec2 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

scale a logical, if TRUE the distance is scaled by dividing the distance by the length of
spec1 (or spec2).

Details

The Itakura-Saito (I-S) distance is a non-symmetric measure of the difference between two probabil-
ity distributions. It is here adapted for frequency spectra. The distance is asymmetric, ie computing
the I-S distance between spec1 and spec2 is not the same as computing it between spec2 and spec1.
A symmetry can be obtained by calculating the mean between the two directions.
The distance is obtained following:

DI−S(spec1∥spec2) =
∑ spec1

spec2
− log(

spec1

spec2
)− 1

Value

The function returns a list of three items:

D1 The I-S distance of ’spec2’ with respect to ’spec1’ (i.e. D(spec1 || spec2))

D2 The I-S distance of ’spec1’ with respect to ’spec2’ (i.e. D(spec2 || spec1))

D The symmetric distance (i.e. D = 0.5*(D1+D2))

If scale = TRUE the distance is divided by the length of spec1 (or spec2).

Note

The function works for both Hz and (htk-)mel scales.

kl.dist 101

Author(s)

Jerome Sueur, improved by Laurent Lellouch

See Also

kl.dist, ks.dist, logspec.dist, simspec, diffspec

Examples

Comparison of two spectra
data(tico)
tico1 <- spec(tico, at=0.65, plot=FALSE)
tico2 <- spec(tico, at=1.1, plot=FALSE)
itakura.dist(tico1, tico2)
itakura.dist(tico1, tico2, scale=TRUE)

kl.dist Kullback-Leibler distance

Description

Compare two distributions (e.g. two frequency spectra) by computing the Kullback-Leibler distance

Usage

kl.dist(spec1, spec2, base = 2)

Arguments

spec1 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

spec2 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

base the logarithm base used to compute the distance. See log.

Details

The Kullback-Leibler distance or relative entropy is a non-symmetric measure of the difference
between two probability distributions. It is here adapted for frequency spectra. The distance is
asymmetric, ie computing the K-L distance between spec1 and spec2 is not the same as computing
it between spec2 and spec1. A symmetry can be obtained by calculating the mean between the two
directions.
The distance is obtained following:

DK−L(spec1∥spec2) =
∑

spec1× log(
spec1

spec2
)

102 ks.dist

Value

The function returns a list of three items:

D1 The K-L distance of ’spec2’ with respect to ’spec1’ (i.e. D(spec1 || spec2))

D2 The K-L distance of ’spec1’ with respect to ’spec2’ (i.e. D(spec2 || spec1))

D The symmetric K-L distance (i.e. D = 0.5*(D1+D2))

Note

The base of the logarithm can be changed using the argument base. When sets to base 2, the
information is measured in units of bits. When sets to base e, the information is measured in nats.
The function works for both Hz and (htk-)mel scales.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

References

Kullback, S., Leibler, R.A. (1951). On information and sufficiency. Annals of Mathematical Statis-
tics, 22: 79-86

See Also

ks.dist, logspec.dist, simspec, diffspec

Examples

Comparison of two spectra
data(tico)
tico1 <- spec(tico, at=0.65, plot=FALSE)
tico2 <- spec(tico, at=1.1, plot=FALSE)
kl.dist(tico1, tico2) # log2 (binary logarithm)
kl.dist(tico1, tico2, base=exp(1)) # ln (natural logarithm)

ks.dist Kolmogorov-Smirnov distance

Description

This function compares two distributions (e.g. two frequency spectra) by computing the Kolmogorov-
Smirnov distance

ks.dist 103

Usage

ks.dist(spec1, spec2, f = NULL, mel = FALSE,
plot = FALSE, type = "l",
lty = c(1, 2), col = c(2, 4),
flab = NULL, alab = "Cumulated amplitude",
flim = NULL, alim = NULL,
title = TRUE, legend = TRUE, ...)

Arguments

spec1 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

spec2 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

f sampling frequency of waves used to obtain spec1 and spec2 (in Hz). Not
necessary if spec1 and/or spec2 is a two columns matrix obtained with spec or
meanspec.

mel a logical, if TRUE the (htk-)mel scale is used.
plot logical, if TRUE plots both cumulated spectra and their maximal distance (i.e. the

K-S distance.)
type if plot is TRUE, type of plot that should be drawn. See plot for details (by

default "l" for lines).
lty a vector of length 2 for the line type of spec1 and spec2 if type="l".
col a vector of length 2 for the colour of spec1 and spec2.
flab title of the frequency axis.
alab title of the amplitude axis.
flim the range of frequency values.
alim range of amplitude axis.
title logical, if TRUE, adds a title with D and F values.
legend logical, if TRUE adds a legend to the plot.
... other plot graphical parameters.

Details

The Kolmogorov distance is the maximal distance between the cumulated spectra. The function
returns this distance and the corresponding frequency. This is an adaptation of the statistic computed
by the non-parametric Kolmogorov-Smirnov test (see ks.test).

Value

The function returns a list of two items

D the Kolomogorov-Smirnov distance
F the frequency (in KHz) where the Kolmogorov-Smirnov distance was found

104 lfs

Note

There is no p-value associated to the K-S distance.
If no frequency is provided, only the distance D.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

See Also

kl.dist, simspec, diffspec, logspec.dist, diffcumspec, itakura.dist

Examples

Comparison of two spectra and plot of the cumulated spectra with the K-S distance
data(tico)
tico1 <- spec(tico, at=0.65, plot=FALSE)
tico2 <- spec(tico, at=1.1, plot=FALSE)
ks.dist(tico1, tico2, plot=TRUE)
mel scale
require(tuneR)
data(orni)
orni.mel <- melfcc(orni, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
orni.mel.mean <- apply(orni.mel$aspectrum, MARGIN=2, FUN=mean)
tico.mel <- melfcc(tico, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
tico.mel.mean <- apply(tico.mel$aspectrum, MARGIN=2, FUN=mean)
ks.dist(orni.mel.mean, tico.mel.mean, f=22050, mel=TRUE, plot=TRUE)

lfs Linear Frequency Shift

Description

This function linearly shifts all the frequency content of a time wave.

Usage

lfs(wave, f, channel = 1, shift, wl = 1024, ovlp = 75,
wn = "hanning", fftw = FALSE, output = "matrix")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

shift positive or negative frequency shift to apply (in Hz).

lfs 105

wl window length for the analysis (even number of points, by default = 1024).

ovlp overlap between successive FFT windows (in %, by default 75%).

wn window name, see ftwindow (by default "hanning").

fftw if TRUE calls the function FFT of the library fftw. See Notes of the spectro.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

Details

A short-term Fourier transform is first applied to the signal (see spectro), then the frequency shift
is applied and the new signal is eventually generated using the reverse of the Fourier Transform
(istft).
There is therefore neither temporal modifications nor amplitude modifications.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr> and Thierry Aubin <thierry.aubin@u-psud.fr>

References

Hopp, S. L., Owren, M. J. and Evans, C. S. (Eds) 1998. Animal acoustic communication. Springer,
Berlin, Heidelberg.

See Also

ffilter, spectro

Examples

data(orni)
a<-lfs(orni,f=22050,shift=1000)
spectro(a,f=22050)
to be compared with the original signal
spectro(orni,f=22050)

106 listen

listen Play a sound wave

Description

Play a sound wave

Usage

listen(wave, f, channel=1, from = NULL, to = NULL, choose = FALSE)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

from start of play (in s).

to end of play (in s).

choose logical, if TRUE start (=from) and end (=to) points can be graphically chosen
with a cursor on the oscillogram.

Note

This function is based on play but allows to read one-colum matrix, data.frame, time-series and
Sample objects.

Author(s)

Jerome Sueur <sueur@mnhn.fr> but the original play function is by Uwe Ligges (package tuneR).

See Also

play

Examples

NOT RUN
data(tico)
listen(tico,f=22050)
listen(tico,f=22050,from=0.5,to=1.5)
listen(noise(d=1,f=8000,Wave=TRUE))
change f to play the sound a different speed
data(sheep)
normal
listen(sheep,f=8000)
two times faster

localpeaks 107

listen(sheep,f=8000*2)
two times slower
listen(sheep,f=8000/2)

localpeaks Local maximum frequency peak detection

Description

This functions searches for local peaks of a frequency spectrum

Usage

localpeaks(spec, f = NULL, bands = 10, mel = FALSE, plot = TRUE,
xlab = NULL, ylab = "Amplitude", labels = TRUE, ...)

Arguments

spec a data set resulting of a spectral analysis obtained with spec or meanspec. Can
be in dB.

f sampling frequency of spec (in Hz). Not requested if the first column of spec
contains the frequency axis.

bands a numeric vector. If vector of length 1, then sets the number of bands dividing
in equal parts the spectrum. If of length > 1, then takes the values as kHz limits
of the bands dividing the spectrum. These bands can be of different size. See
details and examples.

mel a logical, if TRUE the (htk-)mel scale is used.
plot logical, if TRUE, a plot showing the peaks is returned.
xlab label of the x-axis.
ylab label of the y-axis.
labels logical, if TRUE peak labels are plotted.
... other plot graphical parameters.

Details

The function proceed as follows

• divides the spectrum in bands. The limits of the bands are set with the argument bands. There
are two options:

– you set a number of bands with equal size by giving a single value to bands. For instance,
setting bands to a value of 10 will slice the spectrum in 10 equal parts and return 10 local
peaks.

– you set the limits of the bands. This is achieve by giving a numeric vector to bands.
The limits can follow a regular or irregular series. For instance attributing the vector
c(0,2,4,8) will generate the following bands [0,2[, [2,4[, [4,8] kHz. Be aware that the last
value should not exceed half the sampling frequency used to obtain the spectrum spec.

• uses the function fpeaks with the argument nmax set to 1.

108 logspec.dist

Value

A two-column matrix, the first column corresponding to the frequency values (x-axis) and the sec-
ond column corresponding to the amplitude values (y-axis) of the peaks.

Author(s)

Jerome Sueur

See Also

fpeaks, meanspec, spec

Examples

data(sheep)
spec <- meanspec(sheep, f=8000)
a specific number of bands with all the same size
localpeaks(spec, bands=5)
bands directly specified with a regular sequence
localpeaks(spec, bands=seq(0,8/2,by=0.5))
bands directly specified with an irregular sequence
localpeaks(spec, bands=c(0,0.5,1,1.5,3,4))
Amaj octave bands, note that there is no peak detection
in the higher part of the spectrum as sequence stops at 3520 Hz
localpeaks(spec, bands=octaves(440, below=3, above=3)/1000)
melscale
require(tuneR)
mel <- melfcc(sheep, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
melspec.mean <- apply(mel$aspectrum, MARGIN=2, FUN=mean)
melspec.mean <- melspec.mean/max(melspec.mean) # [0,1] scaling
localpeaks(melspec.mean, f=8000, bands=8)

logspec.dist Log-spectral distance

Description

Compare two distributions (e.g. two frequency spectra) by computing the log-spectral distance

Usage

logspec.dist(spec1, spec2, scale=FALSE)

logspec.dist 109

Arguments

spec1 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

spec2 any distribution, especially a spectrum obtained with spec or meanspec (not in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

scale a logical, if TRUE the distance is scaled by dividing by the square-root of the
length of spec1 (or spec2).

Details

The distance is computed according to:

DLS(spec1∥spec2) = DLS(spec2∥spec1) =
√∑

10× log10(
spec1

spec2
)2

If scale = TRUE the distance is divided by the length of spec1 (or spec2).

Value

A numeric vector of length 1 returning the D distance.

Note

The function works for both Hz and (htk-)mel scales.

Note

The distance is symmetric.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

See Also

ks.dist, kl.dist, itakura.dist, simspec, diffspec

Examples

Comparison of two spectra
data(tico)
tico1 <- spec(tico, at=0.65, plot=FALSE)
tico2 <- spec(tico, at=1.1, plot=FALSE)
logspec.dist(tico1, tico2)
logspec.dist(tico1, tico2, scale=TRUE)

110 lts

lts Long-term spectrogram

Description

A spectrogram computed over several survey files obtained with a Wildlife Acoustics SongMeter
recorder

Usage

lts(dir, f, wl = 512,
wn = "hanning", ovlp = 0, rmoffset = TRUE, FUN = mean, col = spectro.colors(30),
fftw = FALSE, norm = FALSE, verbose = TRUE,
tlab = "Time", ntann = NULL, flab = "Frequency (kHz)",
recorder = c("songmeter", "audiomoth"), plot = TRUE, ...)

Arguments

dir a character vector, the path to the directory where the .wav files are stored or
directly the names of the .wav files to be processed.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in the .wav files contained in dir.

wl window length for the analysis (even number of points) (by default = 512).

wn window name, see ftwindow (by default "hanning").

ovlp overlap between two successive windows (in %).

rmoffset a logical to sepcify whether DC offset should be removed. By default TRUE.

FUN the function to apply to compute the successive frequency spectra, by default
mean for a mean spectrum but could be other as median or var for a median
spectrum or variance spectrum.

col a list of colors or the color palette with a number of colors

fftw if TRUE calls the function FFT of the library fftw. See Notes.

norm a logical, to specify if each mean spectrum should be normalised between 0 and
1 (default FALSE) before to concatenate the image.

verbose a logical, if TRUE (default) the file number and name processed are displayed in
the console.

tlab label of the time axis.

ntann a numeric of length 1, the number of axis annotations (all annotations by de-
fault).

flab label of the frequency axis.

recorder the type of automatic recorder used, either a Wildlife SongMeter or a Open
Audio deveices Audiomoth.

plot logical, if TRUE plots the spectrogram (by default TRUE).

... other image graphical parameters.

lts 111

Details

The function reads each .wav file and computes its mean spectrum with meanspec. The successive
mean spectra are then concatenated into a single image with the function image. The parameters
wl, ovlp, and wn are those of the function meanspec.

Value

This function returns a list of three items:

time a numeric vector corresponding to the time axis.

freq a numeric vector corresponding to the frequency axis.

amp a numeric or a complex matrix corresponding to the amplitude values. Each
column is a Fourier transform of length wl/2.

Author(s)

Jerome Sueur

See Also

spectro, meanspec, image, spectro3D, ggspectro, songmeter, audiomoth

Examples

Not run:
if 'dir' contains a set of files recorded with a Wildlife Acoustics
songmeter recorder then a direct way to obtain
the spectrogram of all .wav files is
dir <- "pathway-to-directory-containing-wav-files"
lts(dir)
to normalise each mean spectrum
lts(dir, norm=TRUE)
to change the STFT parameters used to obtain each mean spectrum
lts(dir, wl=1024, wn="hamming", ovlp=50)
to change the colors and the number of time labels and to make it quiet
lts(dir, col=cm.colors(20), ntann=10, verbose=FALSE)
direct use of files names stored in the working directory
files <- c("S4A09154_20190213_150000.wav", "S4A09154_20190213_153000.wav",
"S4A09154_20190213_160000.wav", "S4A09154_20190213_163000.wav",
"S4A09154_20190213_170000.wav", "S4A09154_20190213_173000.wav",
"S4A09154_20190213_180000.wav", "S4A09154_20190213_183000.wav",
"S4A09154_20190213_190000.wav", "S4A09154_20190213_193000.wav")
lts(files)

End(Not run)

112 M

M Median of the amplitude envelope

Description

This function computes an acoustic index based on the median of the amplitude envelope.

Usage

M(wave, f, channel = 1, envt = "hil", plot = FALSE, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

envt the type of envelope to be used: either "abs" for absolute amplitude envelope
or "hil" for Hilbert amplitude envelope. See env.

plot logical, if TRUE returns a plot of the amplitude envelope of wave (by default
FALSE).

... other env parameters, in particular smoothing parameters. See env.

Details

This amplitude index M is computed according to:

M = Ā(t)× 21−depth

with
0 ≤ M ≤ 1

where A(t) is the amplitude envelope and depth is the signal digitization depth in number of bits.

Value

A numeric vector of length 1 between 0 and 1, without unit.

Author(s)

Jerome Sueur and Marion Depraetere

References

Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur J (2012) Monitoring animal diversity
using acoustic indices: implementation in a temperate woodland. Ecological Indicators, 13, 46-54.

meandB 113

See Also

env, AR

Examples

data(tico)
M(tico)
smoothing the amplitude may change slightly the result
M(tico, msmooth=c(500,50), plot=TRUE)

meandB Mean of dB values

Description

This function calculates the mean of dB values

Usage

meandB(x, level="IL")

Arguments

x a numeric vector or a numeric matrix.
level intensity level ("IL") or sound pressure level ("SPL")

Details

The mean of dB values is not linear. See examples.

Value

A numeric vector of length 1 is returned.

Author(s)

Jerome Sueur and Zev Ross

References

Hartmann, W. M. 1998 Signals, sound and sensation. New York: Springer.

See Also

sddB, moredB, convSPL, dBweight

Examples

meandB(c(89,90,95))

114 meanspec

meanspec Mean frequency spectrum of a time wave

Description

This function returns the mean frequency spectrum (i.e. the mean relative amplitude of the fre-
quency distribution) of a time wave. Results can be expressed either in absolute or dB data.

Usage

meanspec(wave, f, channel = 1, wl = 512, wn = "hanning", ovlp = 0, fftw = FALSE,
norm = TRUE, PSD = FALSE, PMF = FALSE, FUN = mean, correction = "none", dB = NULL,
dBref = NULL, from = NULL, to = NULL, identify = FALSE,
col = "black", cex = 1, plot = 1, flab = "Frequency (kHz)",
alab = "Amplitude", flim = NULL, alim = NULL, type ="l", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl length of the window for the analysis (even number of points, by default = 512).

wn window name, see ftwindow (by default "hanning").

ovlp overlap between two successive analysis windows (in %).

fftw if TRUE calls the function FFT of the library fftw. See Notes of spectro.

norm if TRUE the mean spectrum is normalised (i. e. scaled) by its maximum.

PSD if TRUE return Power Spectra Density, i. e. the square of the spectra.

PMF if TRUE return Probability Mass Function, i. e. the probability distribution of
frequencie.

FUN the function to apply on the rows of the STFT matrix, by default mean for a
mean spectrum but could be other as median or var for a median spectrum or
variance spectrum.

correction a character vector of length 1 to apply an amplitude ("amplitude") or an energy
("energy") correction to the FT window. This argument is useful only when one
wish to obtain absolute values that is when norm=FALSE and PMF=FALSE. By
default no correction is applied ("none").

dB a character string specifying the type dB to return: "max0" for a maximum dB
value at 0, "A", "B", "C", "D", and "ITU" for common dB weights.

dBref a dB reference value when dB is not NULL. NULL by default but should be set to
2*10e-5 for a 20 microPa reference (SPL).

from start mark where to compute the spectrum (in s).

meanspec 115

to end mark where to compute the spectrum (in s).
identify to identify frequency and amplitude values on the plot with the help of a cursor.
col colour of the spectrum.
cex pitch size.
plot if 1 returns frequency on x-axis, if 2 returns frequency on y-axis, (by default 1).
flab title of the frequency axis.
alab title of the amplitude axis.
flim range of frequency axis (in kHz).
alim range of amplitude axis.
type if plot is TRUE, type of plot that should be drawn. See plot for details (by

default "l" for lines).
... other plot graphical parameters.

Details

See examples of spec. This function is based on fft.

Value

If plot is FALSE, meanspec returns a two columns matrix, the first column corresponding to the
frequency axis, the second column corresponding to the amplitude axis.
If identify is TRUE, spec returns a list with two elements:

freq the frequency of the points chosen on the spectrum

amp the relative amplitude of the points chosen on the spectrum

Warning

The argument peaks is no more available (version > 1.5.6). See the function fpeaks for peak(s)
detection.

Note

The argument fftw can be used to try to speed up process time. When set to TRUE, the Fourier
transform is computed through the function FFT of the package fftw. This package is a wrapper
around the fastest Fourier transform of the free C subroutine library FFTW (http://www.fftw.
org/). FFT should be then installed on your OS.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

spec,fpeaks, localpeaks, dynspec, corspec, diffspec, simspec, fft.

http://www.fftw.org/
http://www.fftw.org/

116 mel

Examples

data(orni)
compute the mean spectrum of the whole time wave
meanspec(orni,f=22050)
compute the mean spectrum of a time wave section (from 0.32 s to 0.39 s)
meanspec(orni,f=22050,from=0.32,to=0.39)
different window lengths
op<-par(mfrow=c(3,1))
meanspec(orni,f=22050,wl=256)
title("wl=256")
meanspec(orni,f=22050,wl=1024)
title("wl=1024")
meanspec(orni,f=22050,wl=4096)
title("wl=4096")
par(op)
different overlap values (almost no effects here...)
op<-par(mfrow=c(3,1))
meanspec(orni,f=22050)
title("ovlp=0")
meanspec(orni,f=22050,ovlp=50)
title("ovlp=50")
meanspec(orni,f=22050,ovlp=95)
title("ovlp=95")
par(op)
use of flim to zoom in
op<-par(mfrow=c(2,1))
meanspec(orni,f=22050)
title("zoom in")
meanspec(orni,f=22050,wl=512,flim=c(4,6))
par(op)
comparaison of spectrum and mean spectrum
op<-par(mfrow=c(2,1))
spec(orni,f=22050)
title("spec()")
meanspec(orni,f=22050)
title("meanspec()")
par(op)
log scale on frequency axis
meanspec(orni, f=22050, log="x")
median spectrum
meanspec(orni,f=22050, FUN=median)
variance spectrum
meanspec(orni,f=22050, FUN=var)

mel Hertz / Mel conversion

Description

This function converts Hertz data in Mel data.

mel 117

Usage

mel(x, inverse = FALSE)

Arguments

x a value in Hertz (or in Mel if inverse is TRUE)
inverse logical, if TRUE converts the Mel data in Hertz data.

Details

Hertz to mel conversion is computed according to:

m = 1127.01048× log (1 + (
f

700
))

with m in Mel and f in Hertz.
Mel to Hertz conversion (when inverse is TRUE) is therefore computed according to:

f = 700× (e
m

1127.01048 − 1)

with f in Hertz and m in Mel.

Value

A corresponding R object is returned.

Note

The Mel scale is a perceptual scale of pitches judged by listeners to be equal in distance from one
another. The name Mel comes from the word melody to indicate that the scale is based on pitch
comparisons. The reference point between this scale and normal frequency measurement is defined
by equating a 1000 Hz tone, 40 dB above the listener’s threshold, with a pitch of 1000 mels.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Stevens, S. S., Volkman, J. and Newman, E. B. 1937. A scale for the measurement of psychological
magnitude pitch. Journal of the Acoustical Society of America, 8: 185-190.

See Also

melfilterbank

Examples

x<-seq(0,10000,by=50)
y<-mel(x)
plot(x,y,type="l",xlab = "f (hertz)", ylab = "f (mel)",

main = "Mel scale", col="red")

118 melfilterbank

melfilterbank Mel-filter bank for MFCC computation

Description

This functions returns graphically and numerically the Mel-filters used to compute MFCC.

Usage

melfilterbank(f = 44100, wl = 1024,
minfreq = 0, maxfreq = f/2, m = 20,
palette, alpha = 0.5, plot = FALSE)

Arguments

f sammpling frequency (in Hz).

wl the Fourier window length (in number of samples).

minfreq the minimum (or lower) frequency of the filter bank (in Hz).

maxfreq the maximum (or upper) frequency of the filter bank (in Hz).

m the total number of filters.

palette an optional colour palette if plot is TRUE.

alpha alpha-transparency when a colour palette is used.

plot if TRUE all filters are displayed in a single plot.

Value

A list of 3 items:

central.freq the kHz central frequencies of the filters,

freq the kHz frequency scale,

amp the amplitude of the filters, scaled between 0 and 1.

Note

These triangular filters are used for computing MFCCs.

Author(s)

Jerome Sueur

References

Sharan RV & Moir TJ (2016) Applications and advancements in automatic sound recognition. Neu-
rocomputing.

micsens 119

See Also

mel, gammatone

Examples

default values
melfilterbank(plot=TRUE)
with color surfaces
melfilterbank(palette=cm.colors, plot=TRUE)
values changed
res <- melfilterbank(f=16000, wl=512, minfreq=300, plot=TRUE)
plot the 1st filter only
plot(res$freq, res$amp[,1], type="l", xlab="Frequency (kHz)", ylab="Amplitude")
plot the last filter only
plot(res$freq, res$amp[,ncol(res$amp)], type="l", xlab="Frequency (kHz)", ylab="Amplitude")
get the kHz central frequencies of the succesive filters
res$central.freq

micsens Microphone sensitivity and conversion

Description

This function converts microphone sensitivity from mV/Pa to dB.

Usage

micsens(x, sref = 1, inverse = FALSE)

Arguments

x a measured sensitivity in mV/Pa (or in dB if inverse is TRUE)

sref the sensitivity reference (by default equals to 1 V/Pa)

inverse logical, if TRUE, the inverse conversion from dB to mV/Pa is computed.

Details

The sensitivity S in dB is calculated according to:

SdB = 20× log10(
s

sref
)

with s the measured sensitivity in mv/Pa and sref the reference sensitivity (by default 1 mV/Pa).

Value

A numeric value in dB re 1V/Pa with default settings, in mV/Pa if inverse is set to FALSE.

120 moredB

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

convSPL

Examples

conversion of a sensitivity of 2 mV/Pa
micsens(2)
conversion of a sensitivity of -54 dB re 1V/Pa
micsens(-54,inverse=TRUE)

moredB Addition of dB values

Description

This functions calculates the sum of dB values

Usage

moredB(x, level="IL")

Arguments

x a numeric vector or numeric matrix.

level intensity level ("IL") or sound pressure level ("SPL")

Details

The addition of dB values is not linear. See examples.

Value

A numeric vector of length 1.

Author(s)

Jerome Sueur

References

Hartmann, W. M. 1998 Signals, sound and sensation. New York: Springer.

See Also

meandB, sddB, convSPL, dBweight

mutew 121

Examples

two sources of 60 dB give an intensity level of 63 dB
moredB(c(60,60))
addition of three sources
moredB(c(89,90,95))

mutew Replace time wave data by 0 values

Description

This functions replaces a time wave or a section of a time wave by 0 values. For a time wave
describing a sound, this corresponds in muting the sound or a section of it.

Usage

mutew(wave, f, channel = 1, from = NULL, to = NULL, choose = FALSE, plot = TRUE,
output = "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

from start of the silence section (in s).

to end of the silence section (in s).

choose logical, if TRUE start (=from) and end (=to) points can be graphically chosen
with a cursor on the oscillogram.

plot logical, if TRUE returns an oscillographic plot of wave with the new silence sec-
tion (by default TRUE).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

Details

By default, from and from are NULL, this results in completely muting wave.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

122 NDSI

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

oscillo, addsilw, cutw, deletew,fadew, pastew, revw, zapsilw

Examples

data(tico)
mutew(tico,f=22050,from=0.5,to=0.9)

NDSI Normalized Difference Soundscape Index

Description

This function computes the Normalized Difference Soundscape Index as described by Kasten et al.
(2012).

Usage

NDSI(x, anthropophony = 1, biophony = 2:8, max = FALSE)

Arguments

x a two-column numeric matrix computed with soundscapespec.

anthropophony a numeric vector defining the frequency band(s) of the anthropophony (in kHz).

biophony a numeric vector defining the frequency band(s) of the biophony (in kHz).

max a logical, if TRUE then defines the biophony as the maximum - not the sum - of
the 2 and 8 kHz frequency bands

Details

NDSI aims at estimating the level of anthropogenic disturbance on the soundscape by computing
the ratio of human-generated (anthropophony) to biological (biophony) acoustic components found
in field collected sound samples. In terms of frequency, the anthropophony is defined as the [1-2[
kHz frequency bin and the biophony as the [2-8[kHz frequency bins of a soundscape frequency
spectrum (see soundscapespec).

NDSI is computed according to:

NDSI =
(biophony − anthropophony)

(biophony + anthropophony)

NDSI varies between -1 and +1, where +1 indicates a signal containing no anthropophony.

noisew 123

Value

A numeric vector of length 1 giving the NDSI value.

Author(s)

Jerome Sueur

References

Kasten, E.P., Gage, S.H., Fox, J. & Joo, W. (2012). The remote environmental assessment labo-
ratory’s acoustic library: an archive for studying soundscape ecology. Ecological Informatics, 12,
50-67.

See Also

soundscapespec, SAX, NDSI

Examples

Note that 'tico' is not a soundscape recording...
data(tico)
spec <- soundscapespec(tico, plot=FALSE)
NDSI(spec)
NDSI(spec, max=TRUE)

noisew Generate noise

Description

This function generates noise.

Usage

noisew(f, d, type="unif", listen = FALSE, output = "matrix")

Arguments

f sampling frequency of the signal to be generated (in Hz)

d duration of the signal to be generated.

type a character string to specify the type of noise, either "unif" or "gaussian".

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

124 notefreq

Details

Uniform noise is generated using runif and gaussian noise is based on rnorm

Value

A new wave is returned. The class of the returned object is set with the argument output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

synth, pulse

Examples

add noise to a synthetic signal
a<-noisew(d=1,f=8000)
b<-synth(f=8000,d=1,cf=2000,plot=FALSE)
c<-a+b
spectro(c,f=8000)

notefreq Frequency of a muscical note

Description

This function computes the frequency of a musical note (Equal temperament)

Usage

notefreq(note, ref = 440, octave = 3)

Arguments

note a numerical or a character vector. See Note.
ref a numerical vector of length 1 for the reference frequency.
octave a numerical vector of length for the octave number.

Details

The frequency is computed according to:

f = ref × 2octave−3+note−10
12

with:
ref = reference frequency,
octave = octave number, and
note = rank of the note along the scale.

octaves 125

Value

The frequency in Hz is returned.

Note

The note can be given in two ways. The first solution is to give the rank of the note along the scale
(e.g. rank 10 for A) or to give its names in characters with the following notation: C, D, E, F, G, A,
B.

Author(s)

Jerome Sueur

See Also

octaves

Examples

Some notes frequency (use apply-like functions when dealing with character strings)
sapply(c("C", "A", "Gb"), notefreq)

C major scale plot
n <- 1:12
freq <- notefreq(n)
names <- c("C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B")
plot(n, freq, pch=19, cex=1.5,

xlab = "Note name",
ylab = "Frequency (Hz)",
xaxt="n", las=1, main="Third octave")

axis(side=1, at=n, labels=names)
abline(h=freq, col="lightgrey")

C major scale sound
f <- 2000 # sampling rate
s <- NULL
for (i in 1:length(freq))

{
tmp <- synth(d=0.5, f=f, cf=freq[i])
s <- pastew(s, tmp, at="start", f)

}
spectro(s, f, ovlp=75)

octaves Octave values

Description

This functions returns the frequency values of the octaves below and above a specific frequency

126 orni

Usage

octaves(x, below = 3, above = 3)

Arguments

x a numeric vector, frequency of the note in Hz or kHz.

below the number of octaves below x.

above the number of octaves above x.

Value

A numeric vector with the octave series in frequency (Hz or kHz depending on x unit).

Author(s)

Jerome Sueur

See Also

notefreq

Examples

names <- c("C","D","E","F","G","A","B")
values <- c(261.63, 293.66, 329.64, 349.23, 392, 440, 493.88)
res <- sapply(values, FUN=octaves)/1000
op <- par(las=1,mfrow=c(2,1))
par(mar=c(0,4,1,1))
matplot(x=1:7, y=res, t="o", pch=names, xlab="",

ylab="Frequency (kHz) [linear scale]", col=rainbow(7), xaxt="n")
par(mar=c(4.5,4,0,1))
matplot(x=1:7, y=res, t="o", pch=names, xlab="Octave",

ylab="Frequency (kHz) [log scale]", col=rainbow(7), ylog=TRUE, log="y")
par(op)

orni Song of the cicada Cicada orni

Description

Recording of a calling song section of the Mediterranean cicada Cicada orni.

Usage

data(orni)

Format

A Wave object.

oscillo 127

Details

Duration = 0.719 s. Sampling frequency = 22050 Hz.

Source

Recording by Jerome Sueur.

Examples

data(orni)
oscillo(orni,f=22050)

oscillo Show a time wave as an oscillogram

Description

This graphical function displays a time wave as an oscillogram in a single or multi-frame plot. The
envelope of the wave can also be shown.

Usage

oscillo(wave, f, channel = 1, from = NULL, to = NULL, fastdisp = FALSE,
scroll = NULL, zoom = FALSE, k=1, j=1, cex,
labels = TRUE, tlab = "Time (s)", alab = "Amplitude",
byrow = TRUE, identify = FALSE, nidentify = NULL,
plot = TRUE, colwave = "black",
coltitle = "black", cextitle = 1.2, fonttitle = 2,
collab = "black", cexlab = 1, fontlab = 1,
colline = "black",
colaxis = "black", cexaxis = 1, fontaxis = 1,
coly0 = "lightgrey",
tcl = 0.5, title = FALSE, xaxt="s", yaxt="n", type="l", bty = "l")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

from start of the oscillogram (in s).

to end of the oscillogram (in s).

fastdisp faster graphic display for long wave. The oscillogram is displayed/saved faster
in the graphic device/ graphic file when set to TRUE, with a cost on graphic
resolution.

128 oscillo

scroll a numeric of length 1 allowing to move along the time wave using a slider panel.
This numeric corresponds to the number of successive windows dividing the
time wave.

zoom time zoom in with start and end points chosen on the oscillogram with a cursor.

k number of horizontal sections (by default =1).

j number of vertical sections (by default =1).

cex pitch size if type = "p".

labels if TRUE plots time and amplitude labels (by default TRUE).

tlab label of time axis.

alab label of amplitude axis.

byrow logical, if TRUE, the sections are filled by rows, otherwise the sections are filled
by colmuns (by default TRUE).

identify returns the time and amplitude coordinates of points chosen with a cursor on the
oscillogram.

nidentify a numeric vector of length 1, specifies the number of points to identified on wave
if identify is TRUE.

plot logical, if TRUE returns an oscillographic or envelope plot of wave(by default
TRUE).

colwave colour of the oscillogram or of the envelope.

coltitle if title is TRUE, colour of the title.

cextitle character size for the title.

fonttitle font for the title.

cexlab character size for axes labels.

fontlab font for axes labels.

collab colour of axes labels.

colline colour of axes line.

colaxis colour of the axis annotation.

fontaxis font of axis annotation.

cexaxis magnification for axis annotation.

coly0 colour of the y=0 line.

tcl length of tick marks.

title TRUE to add a title with information on wave duration and f, FALSE to live it
blank, or a character string to add any desired title.

xaxt equivalent to xaxt of par (by default ="s").

yaxt equivalent to yaxt of par (by default ="n").

type type of plot, by default "l". Use "n" for no plot.

bty the type of box to be drawn around the oscillogram.

oscillo 129

Value

Data are returned as one-column matrix if plot is FALSE. identify returns a two-column matrix
with the time and amplitude coordinates of points successively chosen on the oscillogram.

Note

zoom is similar to but more visual than from and/or to. zoom and identify do work with a single-
frame window only (i. e. with k = 1 and j = 1).
Press ‘Stop’ button of the tools bar after choosing the appropriate points on the oscillogram.

Author(s)

Jerome Sueur <sueur@mnhn.fr> and Caroline Simonis <csimonis@mnhn.fr>.

See Also

dynoscillo, oscilloST, oscilloEQ, cutw, pastew, timer

Examples

data(tico)
a simple oscillogram of a bird song
oscillo(tico)
zoom in
op<-par(mfrow=c(4,1),mar=c(4.5,4,2,2))
oscillo(tico,22050,cexlab=0.75)
oscillo(tico,22050,from=0.5,to=0.9,cexlab=0.75)
oscillo(tico,22050,from=0.65,to=0.75,cexlab=0.75)
oscillo(tico,22050,from=0.68,to=0.70,cexlab=0.75)
par(op)
the same divided in four lines
oscillo(tico,f=22050,k=4,j=1)
the same divided in different numbers of lines and columns
oscillo(tico,f=22050,k=4,j=4)
oscillo(tico,f=22050,k=2,j=2,byrow=TRUE)
oscillo(tico,f=22050,k=2,j=2,byrow=FALSE)
overplot of oscillographic and envelope representations
oscillo(tico,f=22050)
par(new=TRUE)
env(tico,f=22050,colwave=2)
full colour modifications in a two-frame oscillogram
op<-par(bg="grey")
oscillo(tico,f=22050,k=4,j=1,title=TRUE,colwave="black",

coltitle="yellow",collab="red",colline="white",
colaxis="blue",coly0="grey50")

par(op)
change the title
data(orni)
oscillo(orni,f=22050,title="The song of a famous cicada")
move along the signal using scroll

130 oscilloEQ

Not run:
require(rpanel)
oscillo(tico,f=22050,scroll=8)
End(Not run)

oscilloEQ Oscillogram ’equalizer’

Description

A multipanel plot of a time wave displaying the oscillogram of a bank of frequency filters like in an
’equalizer’.

Usage

oscilloEQ(wave, f, channel = 1, flim = NULL, colwave = 1,
xlab = "Time (s)", ylab = "Frequency band (kHz)",
cexlab = 1, collab = 1, fontlab = 1,
savedir = ".", plot = TRUE, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

flim a numeric vector giving the ordered limites of the frequency filters to be applied.
By default, 1 kHz frequency filters.

colwave colour of the oscillogram.

xlab label of the x axis.

ylab label of the y axis.

cexlab character size for axes labels.

collab color for axes labels.

fontlab font for axes labels.

savedir the path were the .wav files will be stored if plot is FALSE. By default, the
working directory.

plot a logical, if TRUE a plot is created, if FALSE then a series of .wav files are saved.
Each file corresponds to a frequency band.

... other oscillo graphical parameters.

oscilloST 131

Details

The function applies a bank of filters as delimited with the argument flim. If plot is TRUE, then
the function displays the wave on a multiframe plot so that the time*amplitude dynamics of each
frequency filter can be estimated. The filtered waves are generated using the function fir. If plot
is FALSE, then the corresponding waves are saved as separated .wav file. Each file corresponds to a
frequency filter.

Value

If plot is FALSE then a series of .wav files are saved. Each file corresponds to a frequency filter.

Author(s)

Jerome Sueur

See Also

oscillo, oscilloST

Examples

data(peewit)
default 1 kHz frequency filter
oscilloEQ(peewit)
change de frequency filter limits
oscilloEQ(peewit, flim=c(0, 4, 8, 10))
oscilloEQ(peewit, flim=seq(2, 10, by=0.5))
play with colors
oscilloEQ(peewit, colwave=c(1,2))
oscilloEQ(peewit, colwave=heat.colors)
blue.gray <- colorRampPalette(c("darkblue", "lightgrey"))
oscilloEQ(peewit, colwave=blue.gray)
save files instead of visualizing them
Not run:
oscilloEQ(peewit, plot=FALSE)

End(Not run)

oscilloST Show a stereo time wave as oscillograms

Description

This graphical function displays a stereo (2 channels) time wave as an oscillogram in a two-frame
plot. The envelope of the wave can also be shown.

132 oscilloST

Usage

oscilloST(wave1, wave2 = NULL, f, from = NULL, to = NULL,
fastdisp = FALSE,
identify = FALSE, plot = TRUE, colwave1 = "black",
colwave2 = "blue", coltitle = "black",
collab = "black", cexlab = 1, fontlab = 1, colaxis = "black",
cexaxis = 1, coly01 = "grey47", coly02 = "black", title = FALSE,
bty = "l")

Arguments

wave1 a first R object.

wave2 a second R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

from start of the oscillogram (in s).

to end of the oscillogram (in s).

fastdisp faster graphic display for long wave. The stereo oscillogram is displayed/saved
faster in the graphic device/ graphic file when set to TRUE, with a cost on the
graphic resolution.

identify returns the time coordinate of points chosen with a cursor on the bottom oscil-
logram.

plot logical, if TRUE returns an oscillographic or envelope plot of wave(by default
TRUE).

colwave1 colour of the oscillogram or of the envelope of wave1.

colwave2 colour of the oscillogram or of the envelope of wave2.

coltitle if title is TRUE, colour of the title.

collab colour of axes title.

cexlab character size for axes title.

fontlab font for axes title.

colaxis colour of the axes

cexaxis mangification for axes annotation.

coly01 colour of the y=0 line of wave1.

coly02 colour of the y=0 line of wave1.

title logical, if TRUE plots the title with information on time and f (by default FALSE).

bty the type of box to be drawn around the oscillogram.

Value

Data are returned as two-column matrix if plot is FALSE. identify returns a numeric object with
the time coordinate of points successively chosen on the bottom oscillogram.

pastew 133

Author(s)

Jerome Sueur and Caroline Simonis.

See Also

oscillo, oscilloEQ, dynoscillo

Examples

a<-synth(f=8000,d=1,cf=2000,am=c(50,10),plot=FALSE)
b<-synth(f=8000,d=1,cf=1000,fm=c(0,0,2000,0,0),plot=FALSE)
oscilloST(a,b,f=8000)

pastew Paste a time wave to another one

Description

This function pastes a first time wave to a second one. The time wave to be pasted, the time wave
to be completed and the resulting time wave can be displayed in a three-frame oscillographic plot.

Usage

pastew(wave1, wave2, f, channel = c(1,1), at = "end",
join = FALSE, tjunction = 0,
choose = FALSE, plot = FALSE,
marks = TRUE, output = "matrix", ...)

Arguments

wave1 a first R object.

wave2 a second R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R objects, by default left channel (1) for each object.

at wave2 position in seconds where wave1 will be pasted into. Can be also specified
as "start", "middle" or "end".

join if TRUE the two waves will be pasted and jointed by removing the last point of
wave2. See examples.

tjunction a numeric vector to remove clicks at the junction of ‘wave1’ and ‘wave2’. The
value specifies the duration in seconds where the real vales will be replaced by
a linear interpolation. This duration should be a few milliseconds.

choose logical, if TRUE the point where wave1 will be pasted into wave2 (=at) can be
graphically chosen with a cursor.

134 pastew

plot logical, if TRUE returns an oscillographic plot of wave1, wave2 and wave1 +
wave2 (by default FALSE).

marks logical, if TRUE shows where wave1 has been pasted (by default TRUE).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

Details

If plot is TRUE returns a two-frame plot with three waves:
(1) the wave to be pasted (wave1),
(2) the wave to be completed (wave2),
(3) the resulting wave.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

See Also

oscillo, addsilw, cutw, deletew, fadew, mutew , revw, repw, timelapse , zapsilw

Examples

data(tico)
double a data set describing a bird song
a<-pastew(tico,tico,f=22050)
oscillo(a,f=22050)
a direct way to see what has been pasted
pastew(tico,tico,f=22050,plot=TRUE)
cut a section and then paste it at the beginning
a<-cutw(tico, f=22050, from=0.5, to=0.9)
pastew(a,tico,f=22050,at="start",plot=TRUE)
or paste it at a specific location
pastew(a,tico,f=22050,at=1.4,plot=TRUE)
setting the argument 'join' to TRUE might be useful
to smooth pasting when some phase problem occur
generate two sine waves
a <- synth(cf=50, f=400, d=0.1)
b <- synth(cf=100, f=400, d=0.1)
paste it with 'join' turned to FALSE
there is a click at the junction between the two waves
pastew(a, b, f=400, plot=TRUE)
that can be removed by setting 'join' to TRUE
pastew(a, b, f=400, join=TRUE, plot=TRUE)

peewit 135

or by using the argument 'tjunction'
pastew(a, b, f=400, tjunction=0.01, plot=TRUE)

peewit Song of the bird Vanellus vanellus

Description

Recording of a song emitted by a peewit (lapwing) male Vanellus vanellus

Usage

data(peewit)

Format

A Wave object.

Details

Duration = 0.706 s. Sampling frequency = 22050 hz.

Source

Recording by Thierry Aubin.

Examples

data(peewit)
oscillo(peewit,f=22050)

pellucens Calling song of the tree cricket Oecanthus pellucens

Description

Recording of a calling song section emitted by the European tree cricket Oecanthus pellucens.

Usage

data(pellucens)

Format

A Wave object.

136 phaseplot

Details

Duration = 3.309 s. Sampling frequency = 11025 hz.

Source

Recording by Jerome Sueur.

Examples

data(pellucens)
oscillo(pellucens,f=11025)

phaseplot Phase-phase 2D or 3D plot of a time wave

Description

This function returns a 2D or 3D representation of a time wave according to its first, second and
possibly third derivatives.

Usage

phaseplot(wave, f, channel = 1, dim = 3, plot = TRUE, type = "l",
xlab = "1st derivative",
ylab = "2nd derivative",
zlab = "3rd derivative", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

dim a vector of lenght 1, the number of dimensions of the plot. Can be either 2 or 3.

plot logical, if TRUE plots phase-phase plot (by default TRUE).

type type of plot that should be drawn. See plot for details (by default "l" for lines).

xlab title of the x axis.

ylab title of the y axis.

zlab title of the z axis.

... other plot or plot3d graphical parameters of the package rgl.

Value

If plot is FALSE then a 2 or 3 column matrix is returned. The position of the column is related to
the order of the derivative (i. e. first colum = first derivative.

phaseplot2 137

Note

Phase-phase plot can be used to test non-linearity.

Author(s)

Jerome Sueur

References

For use of such plots see: Rice AN, Land BR, Bass AH (2011) - Nonlinear acoustic complexity in
a fish ’two-voice’ system. Proceedings of the Royal Society B, in press.

See Also

phaseplot2

Examples

Not run:
require(rgl)
data(tico)
phaseplot(tico)

End(Not run)
s <- synth(d=0.05, f=44100, cf=440, out="Wave")
n <- noisew(d=0.05, f=44100, out="Wave")
par(mfrow=c(2,1))
phaseplot(s, dim=2)
phaseplot(n, dim=2)

phaseplot2 Phase-phase 2D plot of a time wave

Description

This functions returns a 2D representation of a time wave against a delayed version of itself.

Usage

phaseplot2(wave, f, channel = 1, tau = 1, type = "l",
xlab = "x(t)",
ylab = paste("x(t+", tau, ")", sep = ""), ...)

138 phaseplot2

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

tau the time delay to apply in number of samples.

type type of plot that should be drawn. See plot for details (by default "l" for lines).

xlab title of the x axis.

ylab title of the y axis.

... other plot parameters.

Details

The principle consists in displaying in a single x-y graph the original time wave with a delayed
version of itself. The delay is controlled with the argument tau that needs to be specified in number
of samples. The conversion of tau in second is obtained by calculating tau/f, with f the sampling
frequency.

Value

Nothing is returned except an x-y plot.

Note

Phase-phase plot can be used to test non-linearity.

Author(s)

Jerome Sueur

References

Kantz H, Schreiber T (2003) Non linear time series analysis. Cambridge University Press.

See Also

phaseplot

Examples

s <- synth(d=0.05, f=44100, cf=440, out="Wave")
n <- noisew(d=0.05, f=44100, out="Wave")
par(mfrow=c(2,1))
phaseplot2(s)
phaseplot2(n)

playlist 139

playlist Play a list of sound files

Description

This function works as a playlist, ie it plays back a list of sound files.

Usage

playlist(directory, sample = FALSE, loop = 1)

Arguments

directory a character vector indicating the path to the directory where sound files to played
are saved.

sample a logical, if TRUE the order of sounds files to be played back is shuffled.

loop a numeric vector of length 1, number of loops.

Details

The success of using this function depends on the wave player in use. This works particularly well
with SoX under Linux. The type of files (.mp3, .wav, .ogg etc) depends on the wave player as well)

Value

None. Listen and enjoy!

Note

The function is mainly based on play

Author(s)

Jérôme Sueur

See Also

play, listen

Examples

Not run:
playlist("MyMusic", sample = TRUE, loop=2)

End(Not run)

140 preemphasis

preemphasis Pre-emphasis speech filter

Description

A pre-emphasis frequency filter for speech

Usage

preemphasis(wave, f, channel = 1, alpha = 0.9,
plot = FALSE, output = "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

alpha time constant, see Details.

plot a logical, if TRUE plots the spectrogram of the filtered wave and the frequency
response of the comb filter.

output character string, the class of the object to return, either 'matrix', 'Wave',
'Sample', 'audioSample' or 'ts'.

... other arguments to be passed to spectro except scale and osc that are set by
default to FALSE.

Details

The function applies a pre-emphasis filter usually applied in speech analysis. The filter is a kind
of high-pass frequency filter that amplifies the high-frequency content of the sample. The filter is
defined with:

y(n) = x(n)− α× x(n− 1)

where alpha is a time constant usually set between 0.9 and 1.

The frequency response of the filter is obtained with:

H(f) = 1 + a2 − 2× α× cos(2× π × f/fs)

Value

A new wave is returned. The class of the returned object is set with the argument output.

Author(s)

Jerome Sueur

pulsew 141

See Also

bwfilter, combfilter, ffilter, fir,lfs, afilter

Examples

data(sheep)
fc <- 150
f <- sheep@samp.rate
alpha <- exp(-2*pi*fc/f)
res <- preemphasis(sheep, alpha=alpha, output="Wave")

pulsew Generate rectangle pulse

Description

This function generates a rectangle pulse.

Usage

pulsew(dbefore, dpulse, dafter, f, plot = FALSE, output = "matrix", ...)

Arguments

dbefore duration of the silent period before the pulse

dpulse duration of the pulse to generate

dafter duration of silent period after the pulse

f sampling frequency of the signal to be generated (in Hz)

plot logical, if TRUE returns an oscillographic plot of the pulse generated (by default
FALSE).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other plot parameters.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

synth, noisew

142 Q

Examples

pulsew(dbefore=0.5,dpulse=0.1,dafter=0.3,f=8000,plot=TRUE)

Q Resonance quality factor of a frequency spectrum

Description

This function estimates the frequency pureness of a time wave by returning the resonant quality
factor Q at a specific dB level.

Usage

Q(spec, f = NULL, level = -3, mel = FALSE, plot = TRUE, colval = "red",
cexval = 1, fontval = 1, flab = NULL,
alab = "Relative amplitude (dB)", type = "l", ...)

Arguments

spec a data set resulting of a spectral analysis obtained with spec, or meanspec (in
dB). This can be either a two-column matrix (col1 = frequency, col2 = ampli-
tude) or a vector (amplitude).

f sampling frequency of the wave used to obtain spec (in Hz). Not necessary if
spec is a two columns matrix obtained with spec or meanspec.

level frequency bandwidth set by an amplitude value relative to spectrum (in dB).

mel a logical, if TRUE the (htk-)mel scale is used.

plot logical, if TRUE returns the spectrum with Q plotted (by default TRUE).

colval colour of plotting Q.

cexval character size of plotting Q.

fontval font of plotting Q.

flab title of the frequency axis.

alab title of the amplitude axis.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot graphical parameters.

Details

A high Q value indicates a highly resonant system.

Q 143

Value

A list is returned with the following four items:

Q a numeric vector of length 1 returning the Q factor (no units)

dfreq a numeric vector of length 1 the dominant frequency (kHz)

fmin a numeric vector of length 1 returning the minimum frequency of the -dB level
bandwidth (kHz)

fmax a numeric vector of length 1 returning the minimum frequency of the -dB level
bandwidth (kHz)

bwd a numeric vector of length 1 returning the bandwidth, i. e. fmax-fmin (kHz)

Note

This function is based on an linear interpolation of the spectrum so that the result should be consid-
ered as an estimation, not an exact measure.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

See Also

spec, meanspec, corspec, fft.

Examples

bird song
data(tico)
t<-spec(tico,f=22050,at=1.1,plot=FALSE,dB="max0")
op<-par(mfrow=c(2,1),las=1)
Q(t,type="l")
Q(t,type="l",xlim=c(3.8,4.2),ylim=c(-60,0))
title("zoom in")
par(op)
cricket, changing the dB level
data(pellucens)
p<-spec(pellucens,f=11025,at=0.5,plot=FALSE,dB="max0")
op<-par(mfrow=c(3,1))
Q(p,type="l",xlim=c(1.8,2.6),ylim=c(-70,0))
title("level = - 3 (default value)",col.main="red")
Q(p,type="l",level=-6,

xlim=c(1.8,2.6),ylim=c(-70,0),colval="blue")
title("level = - 6",col.main="blue")
Q(p,type="l",level=-9,

xlim=c(1.8,2.6),ylim=c(-70,0),colval="green")
title("level = - 9",col.main="green")
par(op)

144 read.audacity

read.audacity Audacity audio markers import

Description

Read audio markers as exported by Audacity.

Usage

read.audacity(file, format)

Arguments

file A .txt file produced by Audacity when exporting time or time x frequency mark-
ers.

format The format of the file name that will appear in the value, that is in the first
column of the data frame returned. if "dir" then the full path to the file is
returned, if "base" only the base name of the file is returned.

Details

Audacity opens the possibility to annotate sound files with a marker channel. These markers can be
exported as .txt files. The function read.audacity import such .txt files whether they contain time
markers or time x frequency markers.

Value

A data.frame. The size of the data.frame differs whether the .txt file contains time markers or
time x frequency markers.
For time markers, the data.frame contains 4 columns:

1. file returning the name of the input file either with the full path or with the base name only
(see argument format),

2. label the text label,

3. t1 the start time in seconds,

4. t2the end time in seconds.

For time x frequency markers, the data.frame contains 6 columns:

1. file returning the name of the input file either with the full path or with the base name only
(see argument format),

2. label the text label,

3. t1 the start time in seconds,

4. t2 the end time in seconds,

5. f1 the lower frequency in Hz,

6. f2 the upper frequency in Hz.

repw 145

Author(s)

Jerome Sueur

References

Audacity is a free software distributed under the terms of the GNU General Public License.
Web site: https://www.audacityteam.org/

See Also

write.audacity

Examples

Not run:
If 'markers.txt' is an export of Audacity markers
x <- read.audacity("markers.txt")

End(Not run)

repw Repeat a time wave

Description

This function repeats a time wave

Usage

repw(wave, f, channel = 1, times = 2, join = FALSE, plot = FALSE, output= "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

times a numeric of length 1 describing the number of times the wave has to be re-
peated.

join if TRUE the last point of wave will be removed for smoothing junction between
repetitions. See examples.

plot logical, if TRUE plots the repeated time wave.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

https://www.audacityteam.org/

146 resamp

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

oscillo, addsilw, cutw, deletew, fadew, mutew, pastew, revw, zapsilw

Examples

data(tico)
repw(tico,f=22050,plot=TRUE)
use 'join' for smooth pasting
par(mfrow=c(2,1))
a <- synth(cf=50, f=400, d=0.1)
repw(a, f=400, plot=TRUE)
title(main="join is FALSE")
points(x=0.1, y=0, cex=2, col=2)
repw(a, f=400, join=TRUE, plot=TRUE)
title(main="join is TRUE")
points(x=0.1, y=0, cex=2, col=2)

resamp Resample a time wave

Description

This function resamples (down- or over-samples) a time wave. This corresponds to a sampling
frequency change.

Usage

resamp(wave, f, g, channel = 1, output="matrix")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

g new sampling frequency of wave (in Hz).

channel channel of the R object, by default left channel (1).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

revw 147

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Note

Resampling might change frequency properties of the time wave.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

Examples

data(peewit)
downsampling
a<-resamp(peewit,f=22050,g=11025)
oversampling
b<-resamp(peewit,f=22050,g=44100)

revw Time reverse of a time wave

Description

Reverse the wave along the time axis.

Usage

revw(wave, f, channel = 1, env = TRUE, ifreq = TRUE,
plot = FALSE, output = "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

env logical, if TRUE the amplitude envelope is reversed.

ifreq logical, if TRUE the instantaneous frequency is reversed.

plot logical, if TRUE returns an oscillographic plot of the reversed wave (by default
FALSE).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

148 rmam

Details

If plot is TRUE returns an oscillogram of the reversed wave. The amplitude and the instantaneous
frequency can be independently reversed thanks to the arguments env and ifreq. See the examples.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Beeman, K. 1998. Digital signal analysis, editing and synthesis in Hopp, S. L., Owren, M. J. and
Evans, C. S. (Eds) 1998. Animal acoustic communication, pp. 59-103. Springer, Berlin, Heidelberg.

See Also

oscillo, addsilw, deletew, fadew, pastew, mutew

Examples

data(tico)
simple reverse
revw(tico,f=22050,plot=TRUE)
envelope reverse only
revw(tico,f=22050,ifreq=FALSE, plot=TRUE)
instantaneous frequency reverse only
revw(tico,f=22050,env=FALSE, plot=TRUE)

rmam Remove the amplitude modulations of a time wave

Description

This functions removes the amplitude modulation of a time wave through the Hilbert amplitude
envelope.

Usage

rmam(wave, f, channel = 1, plot = FALSE, listen = FALSE, output = "matrix", ...)

rmam 149

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

plot logical, if TRUE returns an oscillographic plot of the nwe time wave (by default
FALSE).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

Details

The new time wave is obtained by dividing the original time wave by its Hilbert amplitude envelope.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Mbu Nyamsi, R. G., Aubin, T. & Bremond, J. C. 1994 On the extraction of some time dependent
parameters of an acoustic signal by means of the analytic signal concept. Its application to animal
sound study. Bioacoustics, 5: 187-203.

See Also

hilbert.

Examples

generate a new sound with amplitude modulation
a<-synth(f=8000, d=1, cf=1500, am=c(50,10))
remove the amplitude modulation and plot the result
rmam(a,f=8000,plot=TRUE)

150 rmnoise

rmnoise Remove noise

Description

This function removes background noise by smoothing

Usage

rmnoise(wave, f, channel = 1, output = "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other smooth.spline arguments.

Details

This function is based on smooth.spline. You can use the arguments of the later to modify the
smoothing.

Value

A new wave is returned. The class of the returned object is set with the argument output.

Note

Low frequency noise might not be removed out properly.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

afilter, noisew

rmoffset 151

Examples

synthesis of a 440 Hz sound with background noise
n <- noisew(d=1,f=8000)
s <- synth(d=1,f=8000,cf=440)
ns <- n+s
remove noise (but low frequency content still there)
a <- rmnoise(ns,f=8000)

rmoffset Remove the offset of a time wave

Description

This function removes the offset of a time wave.

Usage

rmoffset(wave, f, channel = 1, FUN = mean, plot = FALSE, output = "matrix", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

FUN a function used to apply the offset correction. See Details.

plot logical, if TRUE returns an oscillographic plot of the wave after removing the
offset (by default FALSE).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

Value

The offset is removed by substracting the wave by its mean (argument FUN). But other function
can be used. For instance, it can be more approriate to use the median to remove the offtset and
transients. See Examples.
If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

oscillo

152 rms

Examples

data(tico)
artifically generates an offset
tico2<-tico+0.1
see the wave with an offset
oscillo(tico2, f=22050)
remove the offset with the mean (by default)
rmoffset(tico2, f=22050, plot=TRUE)
remove the offset with the median
rmoffset(tico2, f=22050, FUN=median, plot=TRUE)

rms Root Mean Square

Description

This function computes the root mean square or quadratic mean.

Usage

rms(x, ...)

Arguments

x an R object

... further arguments passed to mean

Details

The Root Mean Square or quadratic mean is computed according to:

RMS =

√√√√ 1

n
×

N∑
i=1

xi
2

Value

A numeric vector of length 1

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

mean

roughness 153

Examples

simple rms
rms(1:10)
rms of a normalized envelope
data(sheep)
env <- env(sheep, f=8000)
rms(env)

roughness Roughness or total curvature

Description

This function computes the roughness or total curvature of a curve, i.e. of a time wave or of a
spectrum

Usage

roughness(x, std = FALSE)

Arguments

x a vector

std a logical, if set to TRUE then x is standardized by its maximum.

Details

Roughness or total curvature is the integrated squared second derivative :

roughness =

∫
[D2x(t)]2 dt

.

Value

A vector of length 1.

Note

The value has not unit.

Author(s)

Jerome Sueur

References

Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, Berlin.

154 rugo

See Also

rugo, rms, sh, th, H.

Examples

data(tico)
spec <- meanspec(tico, plot=FALSE)[,2]
roughness(spec)

rugo Rugosity of a time wave

Description

This function computes the rugosity of a time wave or time series

Usage

rugo(x, ...)

Arguments

x a vector

... other mean parameters.

Details

The formula has been slightly modified from Mezquida & Martinez (2009: 826) to fit with the
classical definition of the root-mean-square (see rms).
The rugosity is then computed as following:

rugo =

√√√√n−1∑
i=1

(xi+1 − xi)2

n

for a vector x of length n.

Value

A vector of length 1.

Note

The rugosity of a noisy signal will tend to be higher than that of a pure tone signal, all other things
being equal.

savewav 155

Author(s)

Jerome Sueur

References

Mezquida DA, Martinez JL (2009) - Platform for bee-hives monitoring based on sound analysis.
A perpetual warehouse for swarm’s daily activity. Spanish Journal of Agricultural Research 7,
824-828.

See Also

roughness, rms, sh, th, H.

Examples

data(tico) ; tico <-tico@left
rugosity of the original recording normalised
rugo(tico/max(tico))
synthesis of white noise with the same duration as tico
noise <- noisew(d=length(tico)/22050, f=22050)
tico is normalised to get similar amplitude with the noise
tico.norm <- tico/max(tico)
addition of noise to tico
tico.noisy <- tico.norm + 0.5*noise
new rugosity (higher) on normalised signal
rugo(tico.noisy/max(tico.noisy))

savewav Save a .wav file

Description

Save sound data as .wav file

Usage

savewav(wave, f, channel = 1, filename = NULL, rescale = NULL, ...)

Arguments

wave an R object.
f sampling frequency of wave (in Hz). Does not need to be specified if embedded

in wave.
channel channel of the R object, by default left channel (1).
filename name of the new file. (by default the name of wave).
rescale a numeric vector of length 2 giving the lower (negative value) and upper (posi-

tive value) amplitude limits of the .wav file to be exported.
... other arguments to be passed to writeWave

.

156 SAX

Details

This function uses three functions from the package tuneR: Wave, normalize and writeWave.

Note

The file automatically owerwrites an existing file with the same name.
The amplitude (volume) of the .wav file is normalized by defaults but can be changed with the
argument rescale. See examples

Author(s)

Jerome Sueur <sueur@mnhn.fr>, Ethan C. Brown for the argument ’rescale’

See Also

export.

Examples

require(tuneR)
a<-synth(f=8000,d=2,cf=2000,plot=FALSE)
the name of the file is automatically the name of the object
here: "a.wav"
savewav(a,f=22050)
unlink("a.wav")
if you wish to change the name, use the 'file' argument
savewav(a,f=22050,file="b.wav")
unlink("b.wav")
if you wish to change the amplitude of the file, use the argument 'rescale'
this will turn down the volume of a 16 bit sound
which amplitude was originally ranging between -2^15 and +2^15
savewav(a, f=22050, file="c.wav", rescale=c(-1500,1500))
unlink("c.wav")

SAX Symbolic Aggregate approXimation

Description

This function converts a numeric times seris into a series of letters with a specific length and alpha-
bet.

Usage

SAX(x, alphabet_size, PAA_number,
breakpoints = "gaussian", collapse = NULL)

SAX 157

Arguments

x a numeric vector.

alphabet_size a numeric vector of length 1 setting the size of the alphabet.

PAA_number a numeric vector of length 1 setting the number of elements (subsequences) of
the Piecewise Aggregate Approximation (PAA).

breakpoints either a character vector ("gaussian", "quantiles") or a numeric vector specifying
the sorted values of the breakpoints along the distribution of x. See details and
examples.

collapse a character vector of length 1, specifying the way to collapse the output letters,
see paste. By default letters are returned separated.

Details

The SAX method has been developed to reduce the dimensionality of a numerical series into a
short chain of characters. SAX follows a two-step process: (1) Piecewise Aggregate Approxima-
tion (PAA) and (2) conversion a PAA sequence into a series of letters.

PAA consists in a Z-normalisation, a segmentation of the series of length n into w segments, and
the computation of each segment average.

The conversion of the PAA into a series of letters is achieved by attributing with equiprobability
each value of the PAA to a letter in reference to a Gaussian distribution. This process therefore
assumes that the distribution of the numeric series x follows a Gaussian distribution. To relax
the constraints of normality we here added the possibility to directly work on the quantiles of the
original data distribution or to specify particular breakpoints along the distribution of x. See the
examples.

Value

A character vector of length (when collapse is NULL) or number of character (when collapse is
not NULL) corresponding to PAA_number argument.

Note

SAX has been used recently to search similar times series in a soundcape data base (Kasten et al.,
2012).

Author(s)

Laurent Lellouch. An improvement added by Pavel Senin.

References

Kasten, E.P., Gage, S.H., Fox, J. & Joo, W. (2012). The remote environmental assessment labora-
tory’s acoustic library: an archive for studying soundscape ecology. Ecological Informatics, 12, 50
- 67.

158 scd

Lin, J., Keogh, E., Lonardi, S., Chiu, B., June (2003). A symbolic representation of time series
with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery. San Diego, California, USA.

See Also

discrets, symba, soundscapespec

Examples

data(tico)
spec <- soundscapespec(tico, plot=FALSE)[,2]
SAX(spec, alphabet = 5, PAA = 10)

change breakpoints
SAX(spec, alphabet = 5, PAA = 10, breakpoints="quantiles")
SAX(spec, alphabet = 5, PAA = 10, breakpoints=c(0, 0.5, 0.75, 1))
SAX(spec, alphabet = 5, PAA = 10, breakpoints=c(0, 0.33, 0.66, 1))

different output formats
SAX(spec, alphabet = 5, PAA = 10, collapse="")
SAX(spec, alphabet = 5, PAA = 10, collapse="-")

scd Soundcape chord diagram

Description

Computes and displays a chord diagram of a set of audio files or of a set segments extracted from a
single audio file.

Usage

scd(input, f, sl, wl = 512, wn = "hanning", ovlp = 0, flim = NULL,
rmoffset = TRUE, threshold = NULL, HCA = TRUE,
grid.col = terrain.colors, names, plot = TRUE, verbose = TRUE, ...)

Arguments

input a character vector, either (i) the path to the directory where .wav files are stored,
(ii) directly the names of the .wav files to be processed, or (iii) a single .wav file
to be segmented by the duration set with the argument sl.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in the .wav files contained in input.

sl segment length in duration if input is a single file.

wl window length for the analysis spectral (even number of points) (by default =
512).

scd 159

wn window name for the spectral analysis, see ftwindow (by default "hanning").

ovlp overlap between two successive windows (in %) for the spectral analysis.

flim a numeric vector of length 2 to select a frequency band (in kHz).

rmoffset a logical to sepcify whether DC offset should be removed. By default TRUE.

threshold a numeric value in]0,1[to be applied to the similarity distance. All similairty
distances below this threshold will not depicted.

HCA logical, if TRUE the sectors are colored according to clusters automatically ob-
tained with a hierarchical cluster analysis (HCA).

grid.col name of color palette to color the sectors and the links). By default terrain.colors.

names names of the sectors, if empty then the names of the .wav files or the time stamps
of the segments.

plot logical, if TRUE plots the chord diagram.

verbose logical, if TRUE prints the computation progress of the mean spectra.

... other chordDiagram parameters.

Details

The soundscape chord diagram (SCD) aims at representing similarities between audio files or audio
segments extracted from a single audio file. The mean frequency spectrum of each file/segment is
computed using a STFT. These frequency spectra are then (1) pairwised compared using a similarity
distance (see function diffcumspec, and (2) automatically clustered with a hierarchical cluster
analysis (HCA) (see function HCPC of FactoMiner). The resulting similarity matrix is then given
as an input to the function chordDiagram. The width of the sectors and the links are based on the
spectral similarity matrix. The color of the sectors and the links follow the HCA classification.

Value

THe function returns a list of two items:

m spectral similarity matrix

resHCA the classification result of the HCA, if HCA is TRUE

Note

The function call the function HCPC of the package FactoMineR and the function chordDiagram of
the package circlize.

Author(s)

Adèle de Baudouin, Jérôme Sueur

References

de Baudouin, A, Couprie P, Michaud F, Haupert S, Sueur J – Similarity visualization of nature and
music soundscapes, in prep.

160 sddB

See Also

diffcumspec

Examples

Not run:
1
if 'dir' contains a set of files recorded with a Wildlife Acoustics
songmeter recorder or an Audiomoth then a direct way to obtain
the soundscape chord diagram (SCD) of all .wav files is
dir <- "pathway-to-directory-containing-wav-files"
scd(dir)
to change the STFT parameters used to obtain each mean spectrum
lts(dir, wl=1024, wn="hamming", ovlp=50)
to select only high similarities, here above 0.6
scd(dir, threshold=0.6)
to change the colors
scd(dir, grid.col=colorRampPalette(c("darkblue", "yellow", "grey")))
to name manually the sectors
scd(dir, names=as.character(0:23))
to name automatically the sectors from the name of songmeter files
here according to hour of recording
scd(dir, names=as.character(songmeter(files)$hour))

2
to directly use files names stored in the working directory
files <- c("S4A09154_20190213_150000.wav", "S4A09154_20190213_153000.wav",
"S4A09154_20190213_160000.wav", "S4A09154_20190213_163000.wav",
"S4A09154_20190213_170000.wav", "S4A09154_20190213_173000.wav",
"S4A09154_20190213_180000.wav", "S4A09154_20190213_183000.wav",
"S4A09154_20190213_190000.wav", "S4A09154_20190213_193000.wav")
scd(files)

3
to use of single files which is segmented in successive time segments
lasting each 60 s
file <- "a-very-nice-soundscape.wav")
scd(file, sl = 60)

End(Not run)

sddB Standard deviation of dB values

Description

This function estimates the standard deviation of dB values

seedata 161

Usage

sddB(x, level = "IL")

Arguments

x a numeric vector.

level intensity level ("IL") or sound pressure level ("SPL")

Details

The standard deviation of dB values is not linear. The function is an estimation not an exact com-
putation which is not possible.

Value

A numeric vector of length 1.

Author(s)

Jérôme Sueur

References

Wikipedia, https://en.wikipedia.org/wiki/Propagation_of_uncertainty

See Also

meandB, moredB, convSPL, dBweight

Examples

sddB(c(89,90,95))
sddB(c(89,90,95), level="SPL")

seedata A quick look at quantitative data

Description

See quantitative data at a glance

Usage

seedata(data, na.rm = FALSE, col = "grey")

https://en.wikipedia.org/wiki/Propagation_of_uncertainty

162 seewave

Arguments

data a numeric vector describing quantitative data.

na.rm logical, if TRUE removes NA.

col main color.

Details

The red curves depict the corresponding Normal law (same mean and sd as data).

Value

A multi-plot graphic is returned.

Author(s)

Caroline Simonis <csimonis@mnhn.fr> and Jerome Sueur <sueur@mnhn.fr>.

Examples

seedata(rnorm(1000))

seewave Sound analysis and synthesis

Description

seewave provides functions for analysing, manipulating, displaying, editing and synthesizing time
waves (particularly sound). This package processes in particular time analysis (oscillograms and
envelopes), spectral content, resonance quality factor, entropy, cross correlation and autocorrelation,
zero-crossing, frequency coherence, dominant frequency, analytic signal, 2D and 3D spectrograms.

Details

Package: seewave
Type: Package
Version: 2.2.3
Date: 2023-10-15
License: GPL version 2 or newer
Contributors : Pierre Aumond, Ethan C. Brown,

Adèle de Baudouin,
Guillaume Corbeau, Camille Desjonqueres,
Marion Depraetere, Francois Fabianek,
Amandine Gasc, Sylvain Haupert,
Eric Kasten, Laurent Lellouch,
Stefanie LaZerte, Jonathan Lees,
Jean Marchal, Thibaut Marin-Cudraz,

setenv 163

Andre Mikulec, Sandrine Pavoine,
David Pinaud, Luis J. Villanueva-Rivera
Zev Ross, Carl G. Witthoft,
Hristo Zhivomirov

Acknowledgments: Marianna Anichini, Andrey Anikin, Michel Baylac,
Charlotte Cure, Denis Dupeyron,
Kurt Fristrup, Arnold Fertin,
Sylvain Haupert, Kurt Hornik,
Yannick Jadoul, Emiliano A. Laca,
Uwe Ligges, Duncan Murdoch, Morgane Papin,
Emmanuel Paradis, Daniel Ridley-Ellis,
Brian Ripley, Jesse Ross,
Zev Ross, Pavel Senin, David Savage,
Arvind Sowmyan, Simon Urbanek
Maria A. Wis, George Zhang

Webpage: https://rug.mnhn.fr/seewave/
Discussion group : https://groups.google.com/g/seewave
Source reference: Sueur J, Aubin T, Simonis C (2008) - seewave: a free modular tool for sound analysis and synthesis.

Bioacoustics, 18: 213-226.
Book: Sueur J (2018) - Sound analysis and synthesis with R. Springer.

Author(s)

Jerome Sueur <sueur@mnhn.fr>
Thierry Aubin
Caroline Simonis
Maintainer: Jerome Sueur <sueur@mnhn.fr>

setenv Set the amplitude envelope of a time wave to another one

Description

This function sets the amplitude envelope of a time wave to another one

Usage

setenv(wave1, wave2, f, channel = c(1,1), envt="hil", msmooth = NULL, ksmooth = NULL,
plot = FALSE, listen = FALSE, output = "matrix", ...)

https://rug.mnhn.fr/seewave/
https://groups.google.com/g/seewave

164 setenv

Arguments

wave1 a first R object.

wave2 a second R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R objects, by default left channel (1) for each object.

envt the type of envelope to be used for wave2: either "abs" for absolute amplitude
envelope or "hil" for Hilbert amplitude envelope. See env.

msmooth a vector of length 2 to smooth the amplitude envelope of wave2 with a mean
sliding window. The first component is the window length (in number of points).
The second component is the overlap between successive windows (in %). See
env.

ksmooth kernel smooth via kernel to apply to the amplitude envelope ofwave2. See env.

plot if TRUE returns the oscillogram of the new time wave (by default FALSE).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other oscillo graphical parameters.

Details

wave1 and wave2 can have different duration (length)
Smoothing the envelope with smooth or ksmooth can significantly change the value returned.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

drawenv, env, synth

Examples

data(tico)
a<-synth(d=1,f=22050,cf=1000)
apply 'tico' ammplitude envelope to 'a' that has a square amplitude envelope
setenv(a,tico,f=22050,plot=TRUE)
the same but with smoothing the envelope
setenv(a,tico,f=22050,ksmooth=kernel("daniell",50),plot=TRUE)

sfm 165

sfm Spectral Flatness Measure

Description

This function estimates the flatness of a frequency spectrum.

Usage

sfm(spec)

Arguments

spec a data set resulting of a spectral analysis obtained with spec or meanspec (not
in dB).

Details

SFM is calculated as the ratio between the geometric mean and the arithmetic mean :

F = N ×
N

√∏N
i=1 yi∑N

i=1 yi

with:
y = relative amplitude of the i frequency,
and N = number of frequencies.

Value

A single value varying between 0 and 1 is returned. The value has no unit.

Note

The SFM of a noisy signal will tend towards 1 whereas the SFM of a pure tone signal will tend
towards 0.
See sh for another measure of signal noisiness/pureness.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

See Also

sh, csh

166 sh

Examples

a<-synth(f=8000,d=1,cf=2000,plot=FALSE)
speca<-spec(a,f=8000,at=0.5,plot=FALSE)
sfm(speca)
[1] 0
b<-noisew(d=1,f=8000)
specb<-spec(b,f=8000,at=0.5,plot=FALSE)
sfm(specb)
[1] 0.8233202

sh Shannon and Renyi spectral entropy

Description

This function computes the Shannon or Renyi entropy of a frequency spectrum

Usage

sh(spec, alpha = "shannon")

Arguments

spec a data set resulting of a spectral analysis obtained with spec or meanspec (not
in dB).

alpha a character string, by default "shannon" to compute Shannon entropy, "simpson"
to compute Simpson entropy otherwise a numeric vector of length 1 with a value
superior to 0 but different to 1 to compute Renyi entropy. See the examples.

Details

. Shannon spectral entropy is calculated according to:

S = −
∑N

i=1 yilog2(yi)

log2(N)

. Simpson or Gini-Simpson spectral entropy (or index) is computed according to:

GS = 1−
N∑
i=1

y2i

. Renyi spectral entropy of order alpha is calucalted according to:

R =
1

1− α
× log2(

N∑
i=1

yαi)

with
α ≥ 0

sh 167

α ̸= 1

y = relative amplitude of the i frequency,

N∑
i=1

yi = 1

and N = number of frequencies.

Value

A numeric vector of length 1 is returned. The value has no unit.

Note

The Shannon entropy scaled between 0 and 1 is also known as Pielou’s evenness index

Note

The Shannon spectral entropy of a noisy signal will tend towards 1 whereas the Shannon spectral
entropy of a pure tone signal will tend towards 0. See Han et al. for details regarding the Renyi
entropy.

Author(s)

Jerome Sueur and Laurent Lellouch

References

Han, NC, Muniandy SV, Dayou J (2011) Acoustic classification of Australian anurans based on
hybrid spectral-entropy approach. Applied Acoustics.

Nunes RR, Almeida de MP, Sleigh JW (2004) - Spectral entropy: a new method for anesthetic ade-
quacy. Revista Brasileira de Anestesiologia, 54, 413-422.

Renyi A (1961) - On measures of information and entropy. Proceedings of the 4th Berkeley Sym-
posium on Mathematics, Statistics and Probability 1960. pp. 547-561.

Simpson EH (1949) - Measurement of diversity. Nature, 163, 688.

See Also

csh,th, H, sfm

168 sheep

Examples

a<-synth(f=8000,d=1,cf=2000,plot=FALSE)
speca<-spec(a,f=8000,at=0.5,plot=FALSE)
Shannon spectral entropy
sh(speca)
[1] 0.2336412
b<-noisew(d=1,f=8000)
specb<-spec(b,f=8000,at=0.5,plot=FALSE)
sh(specb)
close to 1
Renyi spectral entropy
sh(speca, alpha=2)
sh(speca, alpha=3)

sheep Sheep bleat

Description

Recording of a sheep bleat.

Usage

data(sheep)

Format

A Wave object.

Details

Duration = 2.47 s. Sampling frequency = 8000 hz.

Source

Recording by Frederic Sebe.

Examples

data(sheep)
oscillo(sheep,f=8000)

simspec 169

simspec Similarity between two frequency spectra

Description

This function estimates the similarity between two frequency spectra.

Usage

simspec(spec1, spec2, f = NULL, mel = FALSE,
norm = FALSE, PMF = FALSE,
plot = FALSE, type = "l",
lty =c(1, 2, 3), col = c(2, 4, 1),
flab = NULL, alab = "Amplitude (percentage)",
flim = NULL, alim = NULL,
title = TRUE, legend = TRUE, ...)

Arguments

spec1 a first data set resulting of a spectral analysis obtained with spec or meanspec
(not in dB). This can be either a two-column matrix (col1 = frequency, col2 =
amplitude) or a vector (amplitude).

spec2 a first data set resulting of a spectral analysis obtained with spec or meanspec
(not in dB). This can be either a two-column matrix (col1 = frequency, col2 =
amplitude) or a vector (amplitude).

f sampling frequency of waves used to obtain spec1 and spec2 (in Hz). Not
necessary if spec1 and/or spec2 is a two columns matrix obtained with spec or
meanspec.

mel a logical, if TRUE the (htk-)mel scale is used.
norm a logical, if TRUE spec1 and spec2 are normalised (scaled) between 0 and 1.
PMF a logical, if TRUE spec1 and spec2 are transformed into probability mass func-

tions.
plot logical, if TRUE plots both spectra and similarity function (by default FALSE).
type if plot is TRUE, type of plot that should be drawn. See plot for details (by

default "l" for lines).
lty a vector of length 3 for the line type of spec1, spec2 and of the similarity

function if type="l".
col a vector of length 3 for the colour of spec1, spec2, and the similarity function.
flab title of the frequency axis.
alab title of the amplitude axis.
flim the range of frequency values.
alim range of amplitude axis.
title logical, if TRUE, adds a title with S value.
legend logical, if TRUE adds a legend to the plot.
... other plot graphical parameters.

170 simspec

Details

Spectra similarity is assessed according to:

S =
100/N

×

N∑
i=1

min spec1(i), spec2(i)

max spec1(i), spec2(i)

with S in %.

Value

The similarity index is returned. This value is in %.
When plot is TRUE, both spectra and the similarity function are plotted on the same graph. The
similarity index is the mean of this function.

Author(s)

Jerome Sueur, improved by Laurent Lellouch

References

Deecke, V. B. and Janik, V. M. 2006. Automated categorization of bioacoustic signals: avoiding
perceptual pitfalls. Journal of the Acoustical Society of America, 119: 645-653.

See Also

spec, meanspec, corspec, diffspec, diffenv, kl.dist, ks.dist, logspec.dist, itakura.dist

Examples

a<-noisew(f=8000,d=1)
b<-synth(f=8000,d=1,cf=2000)
c<-synth(f=8000,d=1,cf=1000)
d<-noisew(f=8000,d=1)
speca<-spec(a,f=8000,at=0.5,plot=FALSE)
specb<-spec(b,f=8000,at=0.5,plot=FALSE)
specc<-spec(c,f=8000,at=0.5,plot=FALSE)
specd<-spec(d,f=8000,at=0.5,plot=FALSE)
simspec(speca,speca)
simspec(speca,specb)
simspec(speca,specc,plot=TRUE)
simspec(specb,specc,plot=TRUE)
#[1] 12.05652
simspec(speca,specd,plot=TRUE)
mel scale
require(tuneR)
data(orni)
data(tico)
orni.mel <- melfcc(orni, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
orni.mel.mean <- apply(orni.mel$aspectrum, MARGIN=2, FUN=mean)
tico.mel <- melfcc(tico, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
tico.mel.mean <- apply(tico.mel$aspectrum, MARGIN=2, FUN=mean)

smoothw 171

simspec(orni.mel.mean, tico.mel.mean, f=22050, mel=TRUE, plot=TRUE)

smoothw A function to tentativily smooth a time wave

Description

This function tries to smooth with a sum sliding window a time wave, and then to remove residual
noise.

Usage

smoothw(wave, f, channel = 1, wl, padding=TRUE, output = "matrix")

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl window length in number of points (samples).

padding a logical, if TRUE add 0 values at the start and end of the file to match wave
length (duration).

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

Details

A window slides along the signal and sums up the sample amplitude values. Zero values are added
at the end of the wave to keep wave length (duration).

Value

A new wave is returned. The class of the returned object is set with the argument output. If
padding is TRUE, the new wave starts and ends up with 0 values to match the size of wave.

Warning

This function should be used with care as this kind of filter may change the frequency content of
the sound. See the examples section for an illustration.

Author(s)

Jerome Sueur

172 songmeter

See Also

fir, filter

Examples

An example to show that smoothw() may change
the frequency content of your sound
data(orni)
orni2 <- smoothw(orni, wl=2, out="Wave")
orni10 <- smoothw(orni, wl=10, out="Wave")
orni50 <- smoothw(orni, wl=50, out="Wave")
orni100 <- smoothw(orni, wl=100, out="Wave")
meanspec(orni)
lines(meanspec(orni2, plot=FALSE), col=2)
lines(meanspec(orni10, plot=FALSE), col=3)
lines(meanspec(orni50, plot=FALSE), col=4)
lines(meanspec(orni100, plot=FALSE), col=5)
legend("topright", col=1:5, lty=1, legend=c("original","wl=2","wl=10","wl=50","wl=100"))

songmeter Reading and interpreting SongMeter file name

Description

This function reads and decomposes the files names generated by a SongMeter device, audio digal
recorders produced by the society Wildlife Acoustics.

Usage

songmeter(x)

Arguments

x a character vector with file names, either .wac or .wav

Details

The digital recorder SongMeter (either SM2, SM3, or SM4 device model) produced by the soci-
ety ’Wildlife Acoustics’ (https://www.wildlifeacoustics.com/) generates ’.wav’ files which
names include useful information. Here are the character format of the files:

• SM2 or SM4: PREFIX_YYYYMMDD_HHMMSS.wav

• SM3:

– without geolocalisation PREFIX_XXX_YYYYMMDD_HHMMSS.wav

– with geolocalisation PREFIX_XXX_YYYYMMDD$HHMMSS.wav

with:

https://www.wildlifeacoustics.com/

songmeter 173

• PREFIX: prefix set when programming the SongMeter

• XXX: microphone information

• YYYY: year

• MM: month

• DD: day

• HH: hour

• MM: month

• SS: minute

This information is read and decomposed by the function songmeter().
Please note that the function does not read the content of audio file but the name of the file.

Value

The function returns a data.frame with the following columns:

model device model, either "SM2/SM4" or "SM3"

prefix prefix of the file, specifying for instance to recording site

mic microphone information specifying if the recording is mono left channel ("monoL"),
mono right ("monoR") or stereo ("stereo"). This works for SM3 only, NA for
SM2

year year of recording, numeric

month month of recording, numeric

day day of recording, numeric

hour hour of recording, numeric

min minute of recording, numeric

sec second of recording, numeric

time time in POSIX format

geo logical, TRUE if the device was GPS synchronized

Note

The file names of Songmeters may change with time. There is no guarantee that the function will
be updated on time.

Author(s)

Jerome Sueur

References

See Wildlife Acoustics website for details regarding the SongMeters 2, 3 and 4: https://www.
wildlifeacoustics.com/

https://www.wildlifeacoustics.com/
https://www.wildlifeacoustics.com/

174 songmeterdiag

See Also

songmeterdiag, audiomoth, strptime for the POSIX time format.

Examples

file1 <- "MNHN_20141225_234500.wav" # SM2 file
file2 <- "CNRS_0+1_20130824_153000.wav" # SM3 file without geolocalisation
file3 <- "PARIS_-0-_20150410$195550.wav" # SM3 file with geolocalisation
file4 <- "MNHN_20141225_234500.txt" # not a .wav or a .wac file
file5 <- "myfile.wav" # not a Wildlife Acoustics filename
files <- c(file1, file2, file3, file4, file5)
songmeter(files)

songmeterdiag Songmeter file diagnostics and diagram

Description

This function looks for files generated by a SongMeter device (audio digal recorders produced
by the society Wildlife Acoustics) and checks for possible missing or small files according to a
predefined recording schedule.

Usage

songmeterdiag(dir, start, end, frequency,
pch.exi = 1, pch.mis = 19,
col.exi = 1, col.mis = 2,
cex.exi = NULL, cex.mis = 0.5,
limits = FALSE, output="file", plot = FALSE)

Arguments

dir a character vector, path to directory(ies) where the .wav files are stored. Typi-
cally a "Data" folder as generated by SongMeter devices.

start a character vector, start date/time of the recording schedule as programmed on
the SongMeter device, must be in the format "year-month-day hour:minute:second".

end a character vector, end date/time of the recording schedule as programmed on
the SongMeter device, must be in the format "year-month-day hour:minute:second".

frequency a numeric vector, frequency of the recording schedule expressed in minute.

pch.exi symbol for plotting the existing file(s).

pch.mis symbol for plotting the missing file(s)

col.exi colour of the symbol for plotting the existing file(s).

col.mis colour of the symbol for plotting the missing file(s).

songmeterdiag 175

cex.exi size of the symbol for plotting the existing file(s), by default NULL so that the
size of the symbol corresponds to the size of the .wav file in Mb divided by the
average size of all .wav files found in the directory. If not NA then symbol size
as in plot.

cex.mis size of the symbol for plotting the missing file(s).

limits a logical, if TRUE adds to the plot the limits (start and end date/time) of the
recording schedule as programmed on the SongMeter device.

output a character vector of length 1, either "file" or "time" to get the file name or the
time slot in POSIXct format respectively.

plot a logical, if TRUE plots a time plot indicating the existing and missing files (by
default TRUE).

Details

The function works for a single or several directories so that the operation of several SongMeters
can be compared visually. This function should be helpful to check quickly how the devices worked.

Value

A character vector with the names of the missing files.

Note

The file names of Songmeters may change with time. There is no guarantee that the function will
be perfectly updated.

Author(s)

Jerome Sueur and Sylvain Haupert

References

See Wildlife Acoustics website for details regarding the SongMeters 2, 3 and 4: https://www.
wildlifeacoustics.com/

See Also

songmeter

Examples

Not run:
##################
simulated data
##################
a recording schedule programmed on four SongMeters SM4
named "S4A03895", "S4A03998", "S4A03536", and "S4A04430"
starting the 1st of January 2019 at 00:00:00
and stopping the 31st January 2019 at 23:30:00

https://www.wildlifeacoustics.com/
https://www.wildlifeacoustics.com/

176 soundscapespec

with a recording frequency of 30 minutes
all directories stored in a single directory named "project"
recorder names
recorders <- c("S4A03895", "S4A03998", "S4A03536", "S4A04430")
n <- length(recorders)
schedule as programmed on the devices
format <- "
start <- strptime("20190101_000000", format)
end <- strptime("20190131_233000", format)
schedule <- seq(from=start, to=end, by=30*60)
schedule <- paste(format(schedule, "
directories and files
dir.create("project")
for(i in 1:n) {
dir.create(paste("project", recorders[i], sep="/"))
}
for(i in 1:n) {
file.create(paste("project", recorders[i],
paste(recorders[i], each=schedule, sep="_"), sep="/"))
}
removing some files to simulate missing files
dirs <- paste("project", recorders, sep="/")
file.remove(paste(dirs[1], dir(dirs[1])[200:500], sep="/"))

######################
use of the function
######################
directories where the .wav files are stored (as above)
dirs <- paste("project", recorders, sep="/")
function call with a plot, cex.exi is here specify because we deal
with ghost files (the .wav file are not truly created)
res <- songmeterdiag(dirs,

start="2019-01-01 00:00:00", end="2019-01-31 23:30:00", frequency=30,
cex.exi=1, plot=TRUE)

clear out
unlink("project", recursive=TRUE)

End(Not run)

soundscapespec Soundscape frequency spectrum of a time wave

Description

This function returns a kHz binned spectrum as described by Kasten et al. (2012) for the description
of a soundscape.

Usage

soundscapespec(wave, f, channel = 1, wl = 1024, wn = "hamming", ovlp = 50,
plot = TRUE, xlab = "Frequency (kHz)", ylim = c(0, 1), ...)

soundscapespec 177

Arguments

wave an R object.
f sampling frequency of wave (in Hz). Does not need to be specified if embedded

in wave.
channel channel of the R object, by default left channel (1).
wl length of the window for the analysis (even number of points, by default = 1024).
wn window name, see ftwindow (by default "hamming").
ovlp overlap between two successive analysis windows (in %), by default = 50%.
plot if TRUE returns a barplot.
xlab title of the barplot x axis.
ylim range of the barplot y axis.
... other barplot graphical parameters.

Details

The soundscape frequency spectrum is based on the computation of a spectrogram power spectral
density using Welch’smethod (Welch & June, 1967). Parameters used in Kasten et al. (2012) were
a Hamming window of 1024 samples with 50% of overlap and are used here as default values.

Value

A two-column numeric matrix, the first column returning the frequency (kHz) bands and the second
column returning the power value within each frequency band.
A barplot is returned when plot is TRUE.

Author(s)

Jerome Sueur and Eric Kasten

References

Kasten, E.P., Gage, S.H., Fox, J. & Joo, W. (2012). The remote environmental assessment labo-
ratory’s acoustic library: an archive for studying soundscape ecology. Ecological Informatics, 12,
50-67.
Welch, P.D., June (1967). The use of the fast Fourier transform for the estimation of power spectra:
a method based on time-averaging over short, modified periodograms. IEEE Transactions on Audio
and Electroacoustics, 15: 70-73.

See Also

spec, meanspec, SAX, NDSI

Examples

Note that 'tico' is not a soundscape recording...
data(tico)
soundscapespec(tico, plot=TRUE, col="darkgreen")

178 sox

sox Calls SoX

Description

This function calls SoX, the Swiss Army knife of sound processing programs.

Usage

sox(command, exename = NULL, path2exe = NULL, option = NULL,
shQuote_type = NULL)

Arguments

command the SoX command to invoke.

exename a character string specifying the name of the SoX binary file. If NULL, the default
name "sox" will be used for Linux OS.

path2exe a character string giving the path to the SoX binary file

g

option option to be passed to the SoX command

shQuote_type type of shell quotes ("cmd" or "cmd2", for Windows OS; "sh" or "csh" Unix OS)

Details

See the documentation of SoX for proper use.

Note

Sox must be installed to use this function but not to install the package seewave. As mentioned on
the SoX webpage, the primary development platform is Linux. Using SoX with Windows from R
might not be straightforward. In particular, it is advisable to pay attention to file path and exe name.

Author(s)

Jerome Sueur, Stefanie LaZerte, Andre Mikulec

References

https://en.wikipedia.org/wiki/SoX

https://en.wikipedia.org/wiki/SoX

spec 179

Examples

Not run:
##########
data
##########
Generate a simple sound file at 440 Hz
s <- synth(cf=440, f=8000, d=1, fm=c(0,0,1000,0,0), output="Wave")
savewav(s, file="mysound.wav")
##############
Linux OS
##############
Play the file
sox("mysound.wav", exename="play")
Slow down the audio tempo (but not its pitch)
sox("mysound.wav myslowsound.wav tempo 0.5")
Cut the file
sox("myslowsound.wav myslowcutsound.wav trim 0.25 0.75")
################
Windows OS
################
path with simple slash
path <- "C:/Program Files (x86)/sox-14-4-2"
or path with double backslash
path <- "C:\Program Files (x86)\sox-14-4-2"
sox("mysound.wav", path2exe=path, option="-t waveaudio")
with the option directly passed to the command
sox("mysound.wav -t waveaudio", path2exe=path)
Slow down the audio tempo (but not its pitch)
sox("mysound.wav myslowsound.wav tempo 0.5", path2exe=path)
Cut the file
sox("myslowsound.wav myslowcutsound.wav trim 0.25 0.75", path2exe=path)
###########
clean
###########
file.remove("mysound.wav", "myslowsound.wav", "myslowcutsound.wav")

End(Not run)

spec Frequency spectrum of a time wave

Description

This function returns the frequency spectrum (i.e. the relative amplitude of the frequency content)
of a time wave. Results can be obtained either as absolute or dB data.

Usage

spec(wave, f, channel = 1, wl = 512, wn = "hanning", fftw = FALSE, norm = TRUE,

180 spec

scaled = FALSE, PSD = FALSE, PMF = FALSE, correction="none", dB = NULL, dBref = NULL,
at = NULL, from = NULL, to = NULL,
identify = FALSE, col = "black", cex = 1,
plot = 1, flab = "Frequency (kHz)",
alab = "Amplitude", flim = NULL,
alim = NULL, type="l",...)

Arguments

wave an R object.
f sampling frequency of wave (in Hz). Does not need to be specified if embedded

in wave.
channel channel of the R object, by default left channel (1).
wl if at is not null, length of the window for the analysis (by default = 512).
wn window name, see ftwindow (by default "hanning").
fftw if TRUE calls the function FFT of the library fftw for faster computation. See

Notes of the function spectro.
norm if TRUE the spectrum is normalised by its maximum.
scaled if TRUE the spectrum is scaled by the length of the FFT.
PSD if TRUE return Power Spectrum Density, i. e. the square of the spectrum.
PMF if TRUE return Probability Mass Function, i. e. the probability distribution of

frequencies.
correction a character vector of length 1 to apply an amplitude ("amplitude") or an energy

("energy") correction to the FT window. This argument is useful only when one
wish to obtain absolute values that is when norm=FALSE, scaled=FALSE, and
PMF=FALSE. By default no correction is applied ("none").

dB a character string specifying the type dB to return: "max0" for a maximum dB
value at 0, "A", "B", "C", "D", and "ITU" for common dB weights.

dBref a dB reference value when dB is not NULL. NULL by default but should be set to
2*10e-5 for a 20 microPa reference (SPL).

at position where to compute the spectrum (in s).
from start mark where to compute the spectrum (in s).
to end mark where to compute the spectrum (in s).
identify to identify frequency and amplitude values on the plot with the help of a cursor.
col colour of the spectrum.
cex pitch size of the spectrum.
plot if 1 returns frequency on x-axis, if 2 returns frequency on y-axis, (by default 1).
flab title of the frequency axis.
alab title of the amplitude axis.
flim range of frequency axis.
alim range of amplitude axis.
type if plot is TRUE, type of plot that should be drawn. See plot for details (by

default "l" for lines).
... other plot graphical parameters.

spec 181

Details

If at, from or to are FALSE then spec computes the spectrum of the whole signal.

Value

This function returns a two-column matrix, the first column corresponding to the frequency axis,
the second column corresponding to the amplitude axis.
If identify is TRUE, spec returns a list with two elements:

freq the frequency of the points chosen on the spectrum

amp the relative amplitude of the points chosen on the spectrum

Warning

The argument peaks is no more available (version > 1.5.6). See the function fpeaks for peak(s)
detection.

Note

This function is based on fft.

Author(s)

Jerome Sueur

See Also

meanspec, fpeaks, localpeaks, dynspec, corspec, fft.

Examples

data(tico)
spectrum of the whole signal, in absolute or dB amplitude,
horizontaly or vertically
op<-par(mfrow=c(2,2))
spec(tico,f=22050)
spec(tico,f=22050,col="red",plot=2)
spec(tico,f=22050,dB="max0",col="blue")
spec(tico,f=22050,dB="max0",col="green",plot=2)
par(op)
an indirect way to compare spectra
a<-spec(tico,f=22050,wl=512,at=0.2,plot=FALSE)
b<-spec(tico,f=22050,wl=512,at=0.7,plot=FALSE)
c<-spec(tico,f=22050,wl=512,at=1.1,plot=FALSE)
d<-spec(tico,f=22050,wl=512,at=1.6,plot=FALSE)
all<-cbind(a[,2],b[,2],c[,2],d[,2])
matplot(x=a[,1],y=all,yaxt="n",

xlab="Frequency (kHz)",ylab="Amplitude",xaxs="i",type="l")

182 specflux

legend(8,0.8,c("Note A","Note B", "Note C", "Note D"),bty="o",
lty=c(1:4),col=c(1:4))

spectrum from a particular position to another one
op<-par(mfrow=c(2,1))
oscillo(tico,f=22050)
abline(v=c(0.5,0.9),col="red",lty=2)
spec(tico,f=22050,wl=512,from=0.5,to=0.9,col="red")
title("Spectrum of the note B")
par(op)
spectrum and spectrogram
data(orni)
orni1<-cutw(orni,f=22050,from=0.32,to=0.39)
layout(matrix(c(1,2),nc=2),widths=c(3,1))
par(mar=c(5,4,3,0.5))
spectro(orni1,f=22050,wl=128,zp=8,ovlp=85,scale=FALSE)
par(mar=c(5,1,3,0.5))
spec(orni1,f=22050,col="red",plot=2,flab="",yaxt="n")

specflux Spectral flux

Description

Compute spectral flux

Usage

specflux(wave, f, channel = 1,
wl = 512, ovlp = 0, wn = "rectangle", flim = NULL,
norm = FALSE, p = 2,
plot = TRUE, xlab = "Times (s)", ylab = "Flux", type = "l", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl window length for the analysis (even number of points) (by default = 512).

ovlp overlap between two successive windows (in %).

wn window name, see ftwindow (by default "rectangle").

flim a numeric vector of length 2 to select a frequency band (in kHz).

norm if is TRUE then the normalised spectra are used. The spectra are normalised by
their sum.

p the norm type, by default = 2.

plot logical, if TRUE the spectral flux is displayed against time (s) (by default TRUE).

specflux 183

xlab title of the x axis.

ylab title of the y axis.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

... other plot parameters.

Details

The spectral flux (F) is the sum of the time (t) derivative of the columns – that is the successive
spectra – (s) of the normalized short-term Fourier transform (z).
F is then computed according to:

F = (
∑

|s(t+ 1)− s(t)|p)
1
p

Value

When plot is FALSE, specflux returns a two-column matrix, the first column being time in seconds
(x-axis) and the second column being the spectral flux (y-axis) computed along time.

Note

The sum of the successive spectral flux values could be used as an ecoacoustic index, quite close to
the acoustic complexity index (ACI). See examples.

Author(s)

Jérôme Sueur

References

Scheirer E, Slaney M (1997). Construction and evaluation of a robust multifeature speech/music
discriminator. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2,
1221-1224.

See Also

spectro, ACI

Examples

default use
data(tico)
specflux(tico)
norm 1
specflux(tico, p = 1)
frequency limit between 2 and 4 kHz
specflux(tico, flim = c(2,4))
index computation
sum(specflux(tico, plot=FALSE)[,2])

184 specprop

specprop Spectral properties

Description

This function returns a list of statistical properties of a frequency spectrum.

Usage

specprop(spec, f=NULL,
str = FALSE, flim=NULL, mel=FALSE,
plot = FALSE, type = "l", xlab=NULL, ylab = NULL,
col.mode = 2, col.quartiles = 4, ...)

Arguments

spec a data set resulting of a spectral analysis obtained with spec or meanspec (not
in dB).

f sampling frequency of spec (in Hz).

str logical, if TRUE returns the results in a structured table.

flim a vector of length 2 to specifgy the frequency limits of the analysis (in kHz)

mel a logical, if TRUE the (htk-)mel scale is used.

plot if 1 returns the spectrum , if 2 returns the cumulative spectrum, both of them
with the first quartile, the third quartile, the median and the mode plotted (by
default FALSE).

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

xlab label of the x axis.

ylab label of the y axis.

col.mode colour of the mode segments (by default blue).

col.quartiles colour of the quartiles segments (by default red).

... other arguments to be passed to plot

Details

The spectrum is converted in a probability mass function (PMF).
If a selected value has to be selected with $, the argument str has to be set to FALSE.

Value

A list of 15 values is returned

mean mean frequency (see mean)

sd standard deviation of the mean (see sd)

specprop 185

sem standard error of the mean

median median frequency (see median)

mode mode frequency, i.e. the dominant frequency

Q25 first quartile (see quantile)

Q75 third quartile (see quantile)

IQR interquartile range (see IQR)

cent centroid, see note

skewness skewness, a measure of asymmetry, see note

kurtosis kurtosis, a measure of peakedness, see note

sfm spectral flatness measure (see sfm)

sh spectral entropy (see sh)

prec frequency precision of the spectrum

Note

Centroid is computed according to:

C =

N∑
i=1

xi × yi

with:
x = frequencies, y = relative amplitude of the i frequency,
N = number of frequencies.

Skewness is computed according to:

S =

∑N
i=1(xi − x̄)3

N − 1
× 1

σ3

.
S < 0 when the spectrum is skewed to left,
S = 0 when the spectrum is symetric,
S > 0 when the spectrum is skewed to right.
Spectrum asymmetry increases with |S|.

Kurtosis is computed according to:

K =

∑N
i=1(xi − x̄)4

N − 1
× 1

σ4

.
K < 3 when the spectrum is platikurtic, i.e. it has fewer items at the center and at the tails than the
normal curve but has more items in the shoulders,
K = 3 when the spectrum shows a normal shape,
K > 3 when the spectrum is leptokurtic, i.e. it has more items near the center and at the tails, with
fewer items in the shoulders relative to normal distribution with the same mean and variance.

186 spectro

Author(s)

Jerome Sueur and Caroline Simonis, and a patch by Jesse Ross (Dec. 2012)

Examples

data(orni)
a<-meanspec(orni,f=22050,plot=FALSE)
specprop(a,f=22050)
to get a single measure of the list
specprop(a,f=22050)$mode
to get the results structured
specprop(a,f=22050,str=TRUE)
to limit the analysis between 4 and 6 kHz
specprop(a,f=22050,flim=c(4,6),str=TRUE)
plots
specprop(a,f=22050,plot=1)
specprop(a,f=22050,plot=2)
(htk-)mel scale
require(tuneR)
mel <- melfcc(orni, nbands = 256, dcttype = "t3", fbtype = "htkmel", spec_out=TRUE)
melspec.mean <- apply(mel$aspectrum, MARGIN=2, FUN=mean)
specprop(melspec.mean, f=22050, mel=TRUE)
be aware that flim is always given in kHz even if mel=TRUE
specprop(melspec.mean, f=22050, flim=c(4,6), mel=TRUE, plot=TRUE)

spectro 2D-spectrogram of a time wave

Description

This function returns a two-dimension spectrographic representation of a time wave. The function
corresponds to short-term Fourier transform. An amplitude contour plot can be overlaid.

Usage

spectro(wave, f, channel = 1, wl = 512, wn = "hanning", zp = 0,
ovlp = 0, noisereduction = NULL, fastdisp = FALSE,
complex = FALSE, norm = TRUE, correction="none",
fftw = FALSE, dB = "max0", dBref = NULL, plot = TRUE,
flog = FALSE, grid = TRUE, osc = FALSE, scale = TRUE, cont = FALSE,
collevels = NULL, palette = spectro.colors,
contlevels = NULL, colcont = "black",
colbg = "white", colgrid = "black",
colaxis = "black", collab="black",
cexlab = 1, cexaxis = 1,
tlab = "Time (s)",
flab = "Frequency (kHz)",
alab = "Amplitude",

spectro 187

scalelab = "Amplitude\n(dB)",
main = NULL,
scalefontlab = 1, scalecexlab =0.75,
axisX = TRUE, axisY = TRUE, tlim = NULL, trel = TRUE,
flim = NULL, flimd = NULL,
widths = c(6,1), heights = c(3,1),
oma = rep(0,4),
listen=FALSE,
...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl window length for the analysis (even number of points) (by default = 512).

wn window name, see ftwindow (by default "hanning").

zp zero-padding (even number of points), see Details.

ovlp overlap between two successive windows (in %).

noisereduction a numeric vector of length 1, if 1 a noise reduction is applied along the rows of
the spectrogram, if 2 a noise reduction applied along the columns. See Details.

fastdisp faster graphic display for long wave. The spectrogram/oscillogram is displayed/saved
faster in the graphic device/ graphic file when set to TRUE, with a cost on graph-
ical resolution.

complex if TRUE the STFT will be returned as complex numbers.

norm if TRUE the STFT is normalised (i. e. scaled) by its maximum.

correction a character vector of length 1 to apply an amplitude ("amplitude") or an energy
("energy") correction to each FT window. This argument is useful only when
one wish to obtain absolute values that is when norm=FALSE. By default no
correction is applied ("none").

fftw if TRUE calls the function FFT of the library fftw. See Notes.

dB a character string specifying the type dB to return: "max0" (default) for a maxi-
mum dB value at 0, "A", "B", "C", "D", and "ITU" for common dB weights. If
set to NULL, then a linear scale is used.

dBref a dB reference value. NULL by default but should be set to 2*10e-5 for a 20
microPa reference.

plot logical, if TRUE plots the spectrogram (by default TRUE).

flog a logical to plot the frequency on a logarithmic scale.

grid logical, if TRUE plots a y-axis grid (by default TRUE).

osc logical, if TRUE plots an oscillogram beneath the spectrogram (by default FALSE).

scale logical, if TRUE plots a dB colour scale on the right side of the spectrogram (by
default TRUE).

188 spectro

cont logical, if TRUE overplots contour lines on the spectrogram (by default FALSE).

collevels a set of levels which are used to partition the amplitude range of the spectrogram
(in dB).

palette a color palette function to be used to assign colors in the plot, see Details.

contlevels a set of levels which are used to partition the amplitude range for contour over-
plot (in dB).

colcont colour for cont plotting.

colbg background colour.

colgrid colour for grid plotting.

colaxis color of the axes.

collab color of the labels.

cexlab size of the labels.

cexaxis size of the axes.

tlab label of the time axis.

flab label of the frequency axis.

alab label of the amplitude axis.

scalelab amplitude scale label.

main label of the main title.

scalefontlab font of the amplitude scale label.

scalecexlab cex of the amplitude scale label.

axisX logical, if TRUE plots time X-axis (by default TRUE).

axisY logical, if TRUE plots frequency Y-axis (by default TRUE).

tlim modifications of the time X-axis limits.

trel time X-axis with a relative scale when tlim is not null, i.e. relative to wave.

flim modifications of the frequency Y-axis limits (in kHz).

flimd dynamic modifications of the frequency Y-axis limits. New wl and ovlp argu-
ments are applied to increase time/frequency resolution.

widths a vector of length 2 to control the relative widths of columns on the device when
scale is TRUE.

heights a vector of length 2 to control the relative heights of rows on the device when
osc is TRUE.

oma a vector of length 4 to control the size of outer margins when either scale or
osc is TRUE.

listen if TRUE the sound is played back (by default FALSE).

... other contour and oscillo graphical parameters.

spectro 189

Details

Following Heisenberg uncertainty principle, the short-term Fourier transform cannot be precised in
both time and frequency. The temporal and frequency precisions of the function are actually depen-
dent of the wl value. Choosing a high wl value will increase the frequency resolution but reduce
the temporal one, and vice versa. The frequency precision is obtained by calculating the ratio f/wl,
and the temporal precision is obtained by calculating the reverse ratio wl/f. This problem can be
reduced in some way with zp that adds 0 values on both sides of the analysis window. This increases
frequency resolution without altering time resolution.
Any colour palette can be used. In particular, it is possible to use other palettes coming with see-
wave: temp.colors, reverse.gray.colors.1, reverse.gray.colors.2, reverse.heat.colors,
reverse.terrain.colors, reverse.topo.colors, reverse.cm.colors corresponding to the re-
verse of heat.colors, terrain.colors, topo.colors, cm.colors.
Use locator to identify points. The noise reduction using the argument noisereduction is an im-
age filter, not a signal filter. The principle consists in subtracting each spectrogram row or column
by its median. Noise reduction alters energy conservation, it should then be used for visual display
only.

Value

This function returns a list of three items:

time a numeric vector corresponding to the time axis.

freq a numeric vector corresponding to the frequency axis.

amp a numeric or a complex matrix corresponding to the amplitude values. Each
column is a Fourier transform of length wl/2.

Note

The argument fftw can be used to try to speed up process time. When set to TRUE, the Fourier
transform is computed through the function FFT of the package fftw. This pacakge is a wrapper
around the fastest Fourier transform of the free C subroutine library FFTW (http://www.fftw.
org/). FFT should be then installed on your OS.

Note

This function is based on fft, contour and filled.contour

Author(s)

Jerome Sueur and Caroline Simonis.

References

Hopp, S. L., Owren, M. J. and Evans, C. S. (Eds) 1998. Animal acoustic communication. Springer,
Berlin, Heidelberg.

See Also

ggspectro, spectro3D, lts, dynspec, wf, oscillo, dBscale, fft.

http://www.fftw.org/
http://www.fftw.org/

190 spectro3D

Examples

Not run:
data(tico)
data(pellucens)
simple plots
spectro(tico,f=22050)
spectro(tico,f=22050,osc=TRUE)
spectro(tico,f=22050,scale=FALSE)
spectro(tico,f=22050,osc=TRUE,scale=FALSE)
change the dB scale by setting a different dB reference value (20microPa)
spectro(tico,f=22050, dBref=2*10e-5)
unnormalised spectrogram with a linear amplitude scale
spectro(tico, dB=NULL, norm=FALSE, scale=FALSE)
manipulating wl
op<-par(mfrow=c(2,2))
spectro(tico,f=22050,wl=256,scale=FALSE)
title("wl = 256")
spectro(tico,f=22050,wl=512,scale=FALSE)
title("wl = 512")
spectro(tico,f=22050,wl=1024,scale=FALSE)
title("wl = 1024")
spectro(tico,f=22050,wl=4096,scale=FALSE)
title("wl = 4096")
par(op)
vertical zoom using flim
spectro(tico,f=22050, flim=c(2,6))
spectro(tico,f=22050, flimd=c(2,6))
a full plot
pellu2<-cutw(pellucens,f=22050,from=1,plot=FALSE)
spectro(pellu2,f=22050,ovlp=85,zp=16,osc=TRUE,

cont=TRUE,contlevels=seq(-30,0,20),colcont="red",
lwd=1.5,lty=2,palette=reverse.terrain.colors)

black and white spectrogram
spectro(pellu2,f=22050,ovlp=85,zp=16,

palette=reverse.gray.colors.1)
colour modifications
data(sheep)
spectro(sheep,f=8000,palette=temp.colors,collevels=seq(-115,0,1))
spectro(pellu2,f=22050,ovlp=85,zp=16,
palette=reverse.cm.colors,osc=TRUE,colwave="orchid1")
spectro(pellu2,f=22050,ovlp=85,zp=16,osc=TRUE,palette=reverse.heat.colors,
colbg="black",colgrid="white", colwave="white",colaxis="white",collab="white")

End(Not run)

spectro3D 3D-spectrogram of a time wave

spectro3D 191

Description

This function returns a three-dimension spectrographic representation of a time wave. The function
corresponds to short-term Fourier transform.

Usage

spectro3D(wave, f, channel = 1, wl = 512, wn = "hanning", zp = 0,
ovlp = 0, noisereduction = FALSE, norm = TRUE, correction = "none", fftw = FALSE,
dB = "max0", dBref = NULL, plot = TRUE,
magt = 10, magf = 10, maga = 2,
palette = reverse.terrain.colors)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl length of the window for the analysis (even number of points).

wn window name, see ftwindow (by default "hanning").

zp zero-padding (even number of points), see Details.

ovlp overlap between two successive windows (in %).

noisereduction a logical, if TRUE a noise reduction is applied.

norm if TRUE the STFT is normalised (i. e. scaled) by its maximum.

correction a character vector of length 1 to apply an amplitude ("amplitude") or an energy
("energy") correction to the FT window. This argument is useful only when one
wish to obtain absolute values that is when norm=FALSE, scaled=FALSE, and
PMF=FALSE. By default no correction is applied ("none").

fftw if TRUE calls the function FFT of the library fftw. See Notes of the spectro.

dB a character string specifying the type dB to return: "max0" for a maximum dB
value at 0, "A", "B", "C", "D", and "ITU" for common dB weights.

dBref a dB reference value when dB is TRUE. NULL by default but should be set to
2*10e-5 for a 20 microPa reference.

plot logical, if TRUE plots the spectrogram (by default TRUE).

magt magnification of the time axis.

magf magnification of the frequency axis.

maga magnification of the amplitude axis.

palette a color palette function to be used to assign colors in the plot, see Details.

192 spectro3D

Details

Following Heisenberg uncertainty principle, the short-term Fourier transform cannot be precised in
both time and frequency. The temporal and frequency precisions of the function are actually depen-
dent of the wl value. Choosing a high wl value will increase the frequency resolution but reduce
the temporal one, and vice versa. The frequency precision is obtained by calculating the ratio f/wl,
and the temporal precision is obtained by calculating the reverse ratio wl/f. This problem can be
reduced in some way with zp that adds 0 values on both sides of the analysis window. This increases
frequency resolution without altering time resolution.
Any colour palette can be used. In particular, it is possible to use other palettes coming with
seewave: reverse.gray.colors.1, reverse.gray.colors.2, spectro.colors, temp.colors,
reverse.heat.colors, reverse.cm.colors, reverse.topo.colors, corresponding to the re-
verse of heat.colors,topo.colors, cm.colors.
Use magt, magf and maga to resize the plot.

Value

This function returns a list of three items:

time a numeric vector corresponding to the time axis.

freq a numeric vector corresponding to the frequency axis.

amp a numeric matrix corresponding to the amplitude values. Each column is a
Fourier transform of length wl/2.

Note

This function requires rgl and is based on fft. See examples of spectro for analysis arguments
(wl,zp, ovlp).

Author(s)

Jerome Sueur <sueur@mnhn.fr> and Caroline Simonis <csimonis@mnhn.fr>.

See Also

spectro, ggspectro, lts, dynspec, wf, fft.

Examples

Not run:
require(rgl)
data(tico)
spectro3D(tico,f=22050,wl=512,ovlp=75,zp=16,maga=4,palette=reverse.terrain.colors)
linear amplitude scale without a normisation of the STFT matrix
time and frequency scales need to be dramatically amplified
spectro3D(tico, norm=FALSE, dB=NULL, magt=100000, magf=100000)

End(Not run)

squarefilter 193

squarefilter Frequency square filter

Description

This function prepares the amplitude profile of a square frequency filter.

Usage

squarefilter(f, from = NULL, to = NULL, bandpass = TRUE, wl = 1024)

Arguments

f a numeric vector of length 1 for the sampling frequency of the object to be
filtered (in Hz).

from a numeric vector for the start frequencies (in Hz) where to apply the filter.

to a numeric vector of the end frequencies (in Hz) where to apply the filter.

bandpass if TRUE a band-pass filter is prepared between start and end frequencies (argu-
ments from and to), if FALSE a bandstop filter is prepared.

wl window length of the impulse filter (even number of points).

Value

The function returns a two-column matrix, the first column is the frequency in kHz and the second
column is the amplitude of the filter (frequency response of the filter).

Note

This function can be used to prepare bandpass or bandstop filters to be used with fir and ffilter.
See examples.

Author(s)

Laurent Lellouch

See Also

fir, drawfilter, ffilter, combfilter, bwfilter

Examples

f <- 44100
a <- noisew(f = f, d = 1)
p <- squarefilter(f, from = c(100, 1000, 4000), to = c(500, 3000, 8000))
plot(p, type="l")
h <- fir(a, f = f, custom = p, wl = 1024, output = 'Wave')
spectro(h)

194 symba

symba Symbol analysis of a numeric (time) series

Description

This function analyses one or two sequences of symbols from numeric (time) series.

Usage

symba(x, y = NULL, symb = 5, collapse = TRUE, entropy = "abs",
plot = FALSE, type = "l", lty1 = 1, lty2 = 2, col1 = 2, col2 = 4,
cex1 = 0.75, cex2= 0.75, xlab = "index", ylab = "Amplitude", legend=TRUE, ...)

Arguments

x a first R object.

y a second R object

symb the number of symbols used for the discretisation, can be set to 3 or 5 only.

collapse logical, if TRUE, the symbols are pasted in a character string of length 1.

entropy either "abs" for an absolute value or "rel" for a relative value, i. e. between 0
and 1.

plot logical, if TRUE plots the series x (and y) and the respective symbols.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

lty1 line type of the object x if type="l".

lty2 line type of the object y if type="l".

col1 colour of the object x.

col2 colour of the object y.

cex1 character size of x symbols.

cex2 character size of y symbols.

xlab title of the x axis.

ylab title of the y axis.

legend logical, if TRUE and if y is not NULL adds a legend to the plot.

... other plot graphical parameters.

Details

The analysis consists in transforming the series into a sequence of symbols (see the function
discrets) and in computing the absolute frequency of each symbol within the sequence.
The entropy (H) is then calculated using the symbol frequencies. Using the argument entropy, the
entropy can be expressed along an absolute scale or as a relative value varying between 0 and 1.
If two numeric (time) series are provided (x and y) the absolute symbol frequencies and entropy of

symba 195

each series is returned. Besides the mutual information (I) is estimated according to:

I = Hx +Hy −Hxy

with Hx the entropy of x symbol series, Hy the entropy of y symbol series, and Hxy$ the joint
entropy of x and y symbol series.

Value

If y is NULL a list of three items is returned (s1, freq1, h1).
If y is not NULL, a list of 6 items is returned (s1, freq1, h1, s2, freq2, h2, I):

s1 the sequence of symbols of x,

freq1 the relative frequency of each x symbol,

h1 the entropy of x symbol sequence,

s2 the sequence of symbols of y,

freq2 the relative frequency of each y symbol,

h2 the entropy of y symbol sequence,

I the mutual information between x and y.

Note

It might be useful to round the values of the input series (see examples).
The mutual information (I) should increase with the similarity between the series to compare (x and
y).

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

Cazelles, B. 2004 Symbolic dynamics for identifying similarity between rhythms of ecological time
series. Ecology Letters, 7: 755-763.

See Also

discrets, SAX

Examples

analysis of a frequency spectrum
data(tico)
spec1<-spec(tico,f=22050,at=0.2,plot=FALSE)
symba(spec1[,2],plot=TRUE)
it might be better to round the values
symba(round(spec1[,2],2),plot=TRUE)
in that case the symbol entropy is close to the spectral entropy
symba(round(spec1[,2],2),entrop="rel")$h1
sh(spec1)

196 synth

to compare two frequency spectra
spec2<-spec(tico,f=22050,wl=512,at=1.1,plot=FALSE)
symba(round(spec1[,2],2),round(spec2[,2],2),plot=TRUE)

synth Synthesis of time wave (additive model)

Description

This functions synthesizes pure or harmonic tone sound with amplitude modulation (am) and/or
frequency modulation (fm).

Usage

synth(f, d, cf, a = 1, signal = "sine", shape = NULL, p = 0,
am = c(0, 0, 0), fm = c(0, 0, 0, 0, 0), harmonics = 1,
plot = FALSE, listen = FALSE, output = "matrix",...)

Arguments

f sampling frequency (in Hz).

d duration (in s).

cf carrier frequency (in Hz).

a amplitude (linear scale, relative when adding different waves).

signal a character vector specifying the shape of the signal, see details.

shape modification of the whole amplitude shape of the wave, see details.

p initial phase (in radians).

am a numeric vector of length 3 describing amplitude modulation parameters, see
details.

fm a numeric vector of length 5 describing frequency modulation parameters, see
details.

harmonics a numeric specifying the number and the relative amplitude of harmonics, see
details.

plot if TRUE returns the spectrogram of the synthezised sound (by default FALSE).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other spectro graphical parameters.

synth 197

Details

• signal is a character vector of length 1 that specifies the function used to synthesize the
signal. There are three options:

1. "sine": for a sinus function,
2. "tria": for a triangle function,
3. "square": for a square function,
4. "saw": for a square function.

• shape is a character vector of length 1 that allows to modify the whole amplitude shape of the
wave. There are four options:

1. "incr": linear increase
2. "decr": linear decrease
3. "sine": sinusoid-like shape
4. "tria": triangular shape

• am is a numeric vector of length 3 including:

1. the amplitude modulation depth (in %)
2. the frequency of the amplitude modulation (in Hz),
3. the phase of the amplitude modulation (in radian).

• fm is a numeric vector of length 5 including:

1. the maximum excursion of a sinusoidal frequency modulation (in Hz),
2. the frequency of a sinusoidal frequency modulation (in Hz),
3. the maximum excursion of a linear frequency modulation (in Hz).
4. the phase of the frequency modulation (in radian).
5. the maximum excursion of an exponential frequency modulation (in Hz).

• harmonics is a numeric vector that controls the number and the relative amplitude of harmon-
ics synthesized.
By default harmonics = 1 meaning that a pure tone made of a single harmonic (fundamental)
will be produced.
To produce harmonics, the length of harmonics has to be greater than 1. The length of
harmonics will set the number of harmonics, including the first one (fundamental). The value
of each element of harmonics specify the relative ampltiude of each harmonic. The first value
must equal to 1.
Here are some examples:

– harmonics = c(1, 0.5, 0.25) will produce a sound with three harmonics (fundamental
+ 2 harmonics), the second harmonic having an amplitude half the fundamental ampltiude
and the second harmonic an amplitude a quarter of the fundamental amplitude.

– harmonics = c(1, 0, 0.25) will produce a sound with two harmonics (fundamental + 1
harmonic) the second harmonic having a null relative amplitude.

– harmonics = rep(1,4) will produce a sound with four harmonics (fundamental + 3 har-
monics) of equal amplitude.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

198 synth

Author(s)

Jerome Sueur and Laurent Lellouch.

References

Hartmann, W. M. 1998 Signals, sound and sensation. New York: Springer.

See Also

synth2, noisew, pulse, echo

Examples

You can use plot=TRUE and spectro() options
to directly 'see' the new-built sounds
f <- 8000 # sampling frequency
d <- 1 # duration (1 s)
cf <- 440 # carrier frequecy (440 Hz, i.e. flat A tone)
pure sinusoidal tone
s <- synth(f=f,d=d,cf=cf)
pure triangular tone
s <- synth(f=f,d=d,cf=cf, signal="tria")
pure tone with triangle overall shape
s <- synth(f=f,d=d,cf=cf,shape="tria")
pure tones with am
s <- synth(f=f,d=d,cf=cf,am=c(50,10))
pure tones with am
and phase shift of pi radian (180 degrees)
s <- synth(f=f,d=d,cf=cf,am=c(50,10,pi))
pure tone with +1000 Hz linear fm
s <- synth(f=f,d=d,cf=cf,fm=c(0,0,1000,0,0))
pure tone with sinusoidal fm
(maximum excursion of 250 Hz, frequency of 10 Hz)
s <- synth(f=f,d=d,cf=cf,fm=c(250,10,0,0,0))
pure tone with sinusoidal fm
(maximum excursion of 250 Hz, frequency of 10 Hz,
phase shift of pi radian (180 degrees))
s <- synth(f=f,d=d,cf=cf,fm=c(250,10,0, pi,0))
pure tone with sinusoidal am
(maximum excursion of 250 Hz, frequency of 10 Hz)
and linear fm (maximum excursion of 500 Hz)
s <- synth(f=f,d=d,cf=cf,fm=c(250,10,500,0,0))
the same with am
s <- synth(f=f,d=d,cf=cf,am=c(50,10), fm=c(250,10,250,0,0))
the same with am and a triangular overall shape
s <- synth(f=f,d=d,cf=cf,shape="tria",am=c(50,10), fm=c(250,10,250,0,0))
an harmonic sound
s <- synth(f=f,d=d,cf=cf, harmonics=c(1, 0.5, 0.25))
a clarinet-like sound
clarinet <- c(1, 0, 0.5, 0, 0.14, 0, 0.5, 0, 0.12, 0, 0.17)
s <- synth(f=f, d=d, cf = 235.5, harmonics=clarinet)
inharmonic FM sound built 'manually'

synth2 199

fm <- c(250,5,0,0,0)
F1<-synth(f=f,d=d,cf=cf,fm=fm)
F2<-synth(f=f,d=d,a=0.8,cf=cf*2,fm=fm)
F3<-synth(f=f,d=d,a=0.6,cf=cf*3.5,fm=fm)
F4<-synth(f=f,d=d,a=0.4,cf=cf*6,fm=fm)
final1<-F1+F2+F3+F4
spectro(final1,f=f,wl=512,ovlp=75,scale=FALSE)

synth2 Synthesis of time wave (tonal model)

Description

This functions synthesizes pure tone sound based on an amplitude envelope and an instantaneous
frequency contour. The function can also be used to modify a reference sound.

Usage

synth2(env = NULL, ifreq, f, plot = FALSE, listen = FALSE, output = "matrix", ...)

Arguments

env a numeric vector describing the amplitude envelope (i.e. the amplitude modula-
tion). By default NULL, generating a squared enveloppe.

ifreq a numeric vector describing the instantaneous frequency (in Hz).

f a numeric vector for the sampling frequency (in Hz)

plot if TRUE returns the spectrogram of the synthezised sound (by default FALSE).

listen if TRUE the new sound is played back.

output character string, the class of the object to return, either "matrix", "Wave",
"Sample", "audioSample" or "ts".

... other spectro graphical parameters.

Details

env and ifreq must have exactly the same length.
The amplitude envelope can be obtained with the Hilbert envelope (function env) and the instanta-
neous frequency can be obtained with the Hilbert transform (function ifreq). This opens a great
variety of signal modidications as shown in the example section.

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Author(s)

Jérôme Sueur and Laurent Lellouch

200 TFSD

References

Beeman, K. 1998 Digital signal analysis, editing and synthesis, in Animal acoustic communication
edited by Hopp SL, Owren MJ, Evans CS, Springer, 59-103.

See Also

synth2, noisew, pulse, echo

Examples

You can use plot=TRUE and spectro() options
to directly 'see' the new-built sounds
MODIFICATION OF A REFERENCE SIGNAL
data(tico)
env.tico <- env(tico, f=22050, plot=FALSE)
ifreq.tico <- ifreq(tico, f=22050, plot=FALSE)$f[,2]
recover the original signal
s <- synth2(env=env.tico, ifreq=ifreq.tico*1000, f=22050)
original signal with instantaneous frequency reversed
s <- synth2(env=env.tico, ifreq=rev(ifreq.tico)*1000, f=22050)
original signal with a +1000 Hz linear frequency shift
s <- synth2(env=env.tico, ifreq=ifreq.tico*1000+1000, f=22050)
original signal with instantaneous frequency multiplied by 2
s <- synth2(env=env.tico, ifreq=ifreq.tico*1000*2, f=22050)
original signal with a linear instantaneous frequency at 2000 Hz
s <- synth2(env=env.tico, ifreq=rep(2000, times=length(tico@left)), f=22050)

DE NOVO SYNTHESIS
instantaneous frequency increasing by step of 500 Hz
s <- synth2(ifreq=rep(c(500,1000,1500,2000,2500,3000,3500,4000), each=2000), f=16000)
square function of the instantaenous frequency
s <- synth2(ifreq=500+seq(-50,50, length.out=8000)^2, f=8000)
linear increase of the amplitude envelope
s <- synth2(env=seq(0,1,length=8000), ifreq=rep(2000,8000), f=8000)
square-root increase of the amplitude envelope
s <- synth2(env=sqrt(seq(0,1,length=8000)), ifreq=rep(2000,8000), f=8000)
square-root increase and decrease of the amplitude envelope
s <- synth2(env=c(sqrt(seq(0,1,length=4000)), sqrt(seq(1,0,length=4000))),

ifreq=rep(2000,8000), f=8000)
amplitude envelope and instantaneous frequency following a normal density shape
norm <- rep(dnorm(-4000:3999, sd=1000), 2)
s <- synth2(env=norm, ifreq=500+(norm/max(norm))*1000, f=8000)

TFSD normalized Time and Frequency Second Derivative

Description

This function computes the normalized Time and Frequency Second Derivative as described by
Aumond et al. (2017).

TFSD 201

Usage

TFSD(wave, f, channel = 1, ovlp = 0, wn = "hamming", flim = c(2,6), nbwindows = 1)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

ovlp overlap between two successive windows (in %).

wn window name, see ftwindow (by default "hanning").

flim a numeric vector of length 2 to select a frequency band (in kHz). Cannot be
NULL.

nbwindows a numeric vector of length 1 specifying the number of windows (by default 1, ie
a single window including the complete wave object.

Details

The TFSD aims at estimating the time of presence of avian or human vocalizations within a sound
environment. It calculates the variation in time and frequency of a signal around frequencies of
interest, normalized by the spectral time variation of a signal as a whole.

Warning, this index was initially developed to work from a third octave spectrogram with a time
sampling of 125 ms.

TFSD is computed according to formulation in reference.

The higher the TFSD varies between 0 and 1, the greater the temporal presence of avian or human
vocalizations. With the default configuration, a TFSD > 0.3 indicates a very important presence
time of the vocalizations in the signal. The TFSD is always greater than 0.

Value

A numeric vector of length nbwindows giving the TFSD values.

Author(s)

Pierre Aumond, Guillaume Corbeau

References

Aumond, P., Can, A., De Coensel, B., Botteldooren, D., Ribeiro, C., & Lavandier, C. (2017). Mod-
eling soundscape pleasantness using perceptual assessments and acoustic measurements along paths
in urban context. Acta Acustica united with Acustica, 12, 50-67.

Gontier, F., Lavandier, C., Aumond, P., Lagrange, M., & Petiot, J. F. (2019). Estimation of the

202 th

perceived time of presence of sources in urban acoustic environments using deep learning tech-
niques. Acta Acustica united with Acustica, 105(6), 1053-1066.

See Also

ACI, NDSI

Examples

Note that 'tico' is not a soundscape recording...
data(tico)
TFSD(tico)
dividing the sound sample into 4 windows of equal duration
TFSD(tico, nbwindows=4)
selection of a frequency band
TFSD(tico, flim=c(2,6))

th Temporal entropy

Description

Compute the entropy of a temporal envelope.

Usage

th(env, breaks)

Arguments

env a data set resulting of an envelope obtained using env

breaks ’breaks’ argument of hist to compute the entropy on the distribution obtained
with an histogram.

Details

Temporal entropy is calculated according to:

S = −
∑N

i=1 yilog2(yi)

log2(N)

with:
y = relative amplitude of the i envelope point,
and

N∑
i=1

yi = 1

and N = number of envelope points.

th 203

Value

A single value varying between 0 and 1 is returned. The value has no unit.

Note

The temporal entropy of a noisy signal with many amplitude modulations will tend towards 1
whereas the temporal entropy of quiet signal will tend towards 0.
Note, however, that a sustained sound with an almost flat envelope will also show a very high tem-
poral entropy except if you compute the entropy on the distribution obtained with the histogram.
See examples.

Author(s)

Jerome Sueur, George Zhan for the idea and implementation of the argument breaks.

See Also

sh, csh, H

Examples

Temporal entropy of a cicada song
data(orni)
envorni<-env(orni,f=22050,plot=FALSE)
th(envorni)
Smoothing the envelope might slightly change the result.
envorniS<-env(orni,f=22050,smooth=c(50,0),plot=FALSE)
th(envorniS)
If we mute a part of the cicada song, the temporal entropy decreases
orni2<-mutew(orni,f=22050,from=0.3,to=0.55,plot=FALSE)
envorni2<-env(orni2,f=22050,plot=FALSE)
th(envorni2)
The temporal entropy of noise tends towards 1
a<-noisew(d=1,f=8000)
enva<-env(a,f=8000,plot=FALSE)
th(enva)
But be aware that the temporal entropy
of a sustained sound also tends towards 1
b<-synth(f=8000,d=1,cf=2000,plot=FALSE)
envb<-env(b,f=8000,plot=FALSE)
th(envb)
except if you use the distribution of the histogram
th(envb, breaks="Sturges")

204 timelapse

tico Song of the bird Zonotrichia capensis

Description

Recording of a song emitted by a male of the neotropical sparrow Zonotrichia capensis.

Usage

data(tico)

Format

A Wave object.

Details

Duration = 1.795 s. Sampling frequency = 22050 hz.

Source

Recording by Thierry Aubin.

Examples

data(tico)
oscillo(tico,f=22050)

timelapse Time lapse

Description

Append successive input sounds into a single output sound

Usage

timelapse(dir, from = 1, to = Inf,
units = c("samples", "seconds", "minutes", "hours"), verbose = TRUE)

timelapse 205

Arguments

dir a character vector, the path to the directory where the .wav files are stored or
directly the names of the .wav files to be appended.

from where to start reading the input files, in units. See readWave of the package
tuneR.

to where to stop reading, in units. See readWave of the package tuneR.

units time units in which from and to is given, the default is "samples", but can be
set to time intervals such as "seconds". See readWave of the package tuneR.

verbose a logical, if TRUE (default) the file number and name processed are displayed in
the console.

Details

The function takes the .wav files which names are provided in the argument dir and append (paste)
them successively so that a single object is obtained. This can be used to produce sound time lapse
based on a series of ordered files as those produced by an automatic recorder (e.g. SongMeter of
the society ’Wildlife Acoustics’).
Only a section of each file can be extracted by using the arguments from and to. The function is
based on readWave and bind of the package tuneR.

Value

A Wave object, a class defined in the package tuneR.

Note

The characteristics (sampling rate, number of bits, stereo/mono) of the output object are those of
the .wav file.
The files should be alphabatically ordered according to time to ensure a proper time lapse.
You should use either savewav or writeWave to save the results as a .wav file.

Author(s)

Jérôme Sueur

See Also

pastew

Examples

Not run:
if 'dir' contains a set of files recorded with a Wildlife Acoustics
songmeter recorder then a direct way to obtain
the spectrogram of all .wav files is
dir <- "pathway-to-directory-containing-wav-files"
res <- timelapse(dir)
to extract a selection of each file (here a section starting
at 10 s and ending at 12 s)

206 timer

res <- timelapse(dir, from=10, to=12, unit="seconds")

End(Not run)

timer Time measurements of a time wave

Description

This function computes and shows the duration of signal periods, pause periods and their ratio.

Usage

timer(wave, f, channel = 1, threshold = 5, dmin = NULL, envt="abs",
power = 1, msmooth = NULL, ksmooth = NULL,
ssmooth = NULL, asmooth=NULL, tlim = NULL, plot = TRUE, plotthreshold = TRUE,
col = "black", colval = "red",
xlab = "Time (s)", ylab = "Amplitude", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

threshold amplitude threshold for signal detection (in %), or alternatively a function to be
applied on the waveform scaled between 0 and 1. See examples.

dmin time threshold (minimum duration) for signal detection (in s).

envt the type of envelope to be used: either "abs" for absolute amplitude envelope or
"hil" for Hilbert amplitude envelope. See env.

power a power factor applied to the amplitude envelope. Increasing power will reduce
low amplitude modulations and increase high amplide modulations. This can be
used to reduce background noise (by default equals to 1, i.e. no change.

msmooth a vector of length 2 to smooth the amplitude envelope with a mean sliding win-
dow. The first component is the window length (in number of points). The
second component is the overlap between successive windows (in %). See env.

ksmooth kernel smooth for the amplitude enveloppe via kernel. See env.

ssmooth sum smooth for the amplitude enveloppe. See env.

asmooth autocorrelation smooth for the amplitude enveloppe. See env.

tlim modifications of the time X-axis limits.

plot logical, if TRUE plots the envelope and the measurements (by default TRUE).

plotthreshold logical, if TRUE plots the threshold as an horizontal line on the graph (by default
TRUE).

TKEO 207

col colour of the envelope.

colval colour of plotted measurements.

xlab title of the x-axis.

ylab title of the y-axis.

... other plot graphical parameters.

Value

A list containing seven items:

s duration of signal period(s) in seconds

p duration of pause period(s) in seconds

r ratio between the signal and silence periods(s)

positions a list containing four elements:

s.start start position(s) of signal period(s)

s.end end position(s) of signal period(s)

first whether the first event detected is a pause or a signal

Warning

Setting to high values to msmooth or ssmooth might return inaccurate results. Double check your
results if so.

Author(s)

Jerome Sueur

See Also

env, cutw, pastew.

TKEO Teager-Kaiser energy tracking operator

Description

This function computes the Teager-Kaiser energy operator.

Usage

TKEO(wave, f, channel = 1, m = 1, M = 1, plot = TRUE,
xlab = "Time (s)", ylab = "Energy",
type = "l", bty = "l", ...)

208 TKEO

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

m a numeric vector of length 1 for the exponent parameter. See details.

M a numeric vector of length 1 for the lag parameter. See details.

plot logical, if TRUE returns a plot of the TK energy along time (by default TRUE).

xlab Label of time x-axis.

ylab Label of energy y-axis.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

bty the type of box to be drawn around the energy plot.

... other plot graphical parameters.

Details

The discrete version of the Teager-Kaiser operator is computed according to:

yn = x2/m
n − (xn−M × xn+M)1/m

,
with m the exponent parameter and M the lag parameter which both are usually equal to 1 for a
conventional operator.
The Teaser-Kaiser operator can be used to track amplitude modulations (AM) and/or frequency
modulations (FM).
See examples.

Value

This function returns a two-column matrix, the first column is time and the second column includes
the successive energy values.
m/2 NA values are added at the start and end of the vector.

Author(s)

Jerome Sueur

References

Kvedalen, E. (2003). Signal processing using the Teager Energy Operator and other nonlinear
operators. University of Oslo, Department of Informatics, PhD Thesis, x + 100 p.

See Also

env, ifreq.

wasp 209

Examples

op <- par(mfrow=c(2,1))

sinusoid AM
s1 <- synth(f=8000, d=0.1, cf=200, am=c(100,10), output="Wave")
oscillo(s1)
TKEO(s1)
linear AM decrease
s2 <- synth(f=8000, d=0.1, cf=200, shape="decr", output="Wave")
oscillo(s2)
TKEO(s2)
sinusoid FM
s3 <- synth(f=8000, d=0.1, cf=200, fm=c(150,50,0,0,0), output="Wave")
oscillo(s3)
TKEO(s3)
linear FM increase
s4 <- synth(f=8000, d=0.1, cf=200, fm=c(0,0,600,0,0), output="Wave")
oscillo(s4)
TKEO(s4)
AM and FM
s5 <- synth(f=8000, d=0.1, cf=200, am=c(100,10), fm=c(150,50,0,0,0), output="Wave")
oscillo(s5)
TKEO(s5)
par(op)

wasp WAve length and SPeed of sound

Description

This function returns the wavelength and the speed of sound of a given frequency in air, fresh-water
or sea-water.

Usage

wasp(f, t = 20, c = NULL, s = NULL, d = NULL, medium = "air")

Arguments

f frequency (Hz).

t temperature (degree Celsius).

c celerity (m/s) if a wavelength is to be found at a particular speed of sound.

s salinity (parts per thousand) when medium is "sea".

d depth (m) when medium is "sea".

medium medium for sound propagation, either "air", "fresh" for fresh, or pure, water,
"sea" for sea water.

210 wasp

Details

Speed of sound in air is computed according to:

c = 331.4 + 0.6× t

Speed of sound in fresh-water is computed according to Marczak equation:

c = 1.402385.103 + 5.038813× t− 5.799136.10−2 × t2

+3.287156.10−4 × t3 − 1.398845.10−6 × t4

+2.787860.10−9 × t5

with t = temperature in degrees Celsius; range of validity: 0-95 degrees Celcius at atmospheric
pressure.

Speed of sound in sea-water is computed according to Mackenzie equation:

c = 1448.96 + 4.591× t− 5.304.10−2 × t2

+2.374.10−4 × t3 + 1.34× (s− 35) + 1.63.10−2 × d

+1.675.10−7 × d2 − 1.025.10−2 × t× (s− 35)

−7.139.10−13 × t× d3

with t = temperature in degrees Celsius; s = salinity in parts per thousand; d = depth in meters;
range of validity: temperature 2 to 30 degrees Celcius, salinity 25 to 40 parts per thousand, depth 0
to 8000 m.

Wavelength is obtained following:

λ =
c

f

with c = speed of sound in meters/second; f = frequency in Hertz.

Value

A list of two values is returned:

l wavelength in meters

c speed of sound in meters/second.

Author(s)

Jerome Sueur <sueur@mnhn.fr>

References

http://resource.npl.co.uk

http://resource.npl.co.uk

wav2dBSPL 211

Examples

wavelength (m) of a 2000 Hz air-borne sound at 20 degrees Celsius
wasp(f=2000)$l
[1] 0.1717

sound speed in sea at 0 and -500 m
for a respective temperature of 22 degrees Celcius and 11 degrees Celcius
wasp(f=1000,s=30,d=c(0,500),t=c(22,11),medium="sea")$c
[1] 1521.246 1495.414

wavelength (m) of a 1000 Hz sound in a medium unspecified where c = 1497 m/s
wasp(f=1000,c=1497)$l
[1] 1.497

variation of wavelength according to frequency and air temperature
op<-par(bg="lightgrey")
a<-seq(1000,20000,by=100) ; na<-length(a)
b<-seq(-20,40,by=10) ; nb<-length(b)
res<-matrix(numeric(na*nb),nrow=na)
for(i in 1:nb) res[,i]<-wasp(a,t=b[i])$l
matplot(x=a,y=res,type="l",lty=1,col= spectro.colors(nb),

xlab="Frequency (Hz)",ylab="Wavelength (m)")
title("Wavelength of air-borne sound at different temperatures (deg. C)")
legend(x=15000,y=0.3,c("-20","-10","0","10","20","30","40"),

lty=1,col= spectro.colors(nb),bg="grey")
par(op)

wav2dBSPL Convert wave amplitude to instantaneous sound pressure level (dB
SPL)

Description

This function applies an absolute dB SPL scale to the amplitude of a time wave based on the
properties of the recording chain, if known.

Usage

wav2dBSPL(wave, f, channel = 1, gain, sensitivity = -35, Vadc = 2, pref = 2 * 10^-5)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

gain total gain applied to the sound (preamplifer + amplifier), in dB.

sensitivity sensitivity of the microphone, in dB/V (by default - 35 dB/V).

212 wav2flac

Vadc maximal voltage (peak to peak) converted by the analog to digital convertor
ADC, in V (by default 2 V).

pref sound pressure reference in the medium, in Pa (by default = 2*10^-5 Pa in air).

Value

A numeric vector of the same legnth as wave containing the sound waveform in dB SPL (Sound
Pressure level in dB)

Note

This function can be used to turn a recorder, as a Songmeter or an Audiomoth, in a kind of
soundlevel meter.

Author(s)

Sylvain Haupert

See Also

wav2leq

Examples

note that the original gain, sensitivity and Vadc of tico
are unknown, this is therefore a kind of 'unreal' example
data(tico)
res <- wav2dBSPL(tico, gain=18)
plot(x=seq(0,duration(tico),length=length(tico@left)), y=res, type="l", xlab="Time (s)",
ylab="dB SPL", las=1)
dB SPL approximation for the complete sound
meandB(res)

wav2flac wav-flac file conversion

Description

This function converts .wav files into .flac files and reversely

Usage

wav2flac(file, reverse = FALSE, overwrite = FALSE,
exename = NULL, path2exe = NULL)

wav2flac 213

Arguments

file the .wav or .flac file to convert.

reverse logical, if TRUE converts a .flac file into a .wav file.

overwrite logical, if TRUE overwrites the file to convert.

exename a character string specifying the name of the FLAC binary file. If NULL, the
dedault name "flac" will be used for Linux OS and "flac.exe" for Windows OS.

path2exe a character string giving the path to the FLAC binary file. If NULL, the dedault
path "c:/Program Files/FLAC/" will be used for Windows OS.

Details

The function runs FLAC. FLAC has then to be installed first, if not the function will not work.

Value

A new file is created.

Note

FLAC must be installed to use this function but not to install the package seewave. Free Lossless
Audio Codec (FLAC) is a file format by Josh Coalson for lossless audio data compression. FLAC
reduces bandwidth and storage requirements without sacrificing the integrity of the audio source.
Audio sources encoded to FLAC are typically reduced in size 40 to 50 percent.

Author(s)

Luis J. Villanueva-Rivera

See Also

savewav

Examples

Not run:
synthesis of a 1kHz sound
a<-synth(d=10,f=8000,cf=1000)
save it as a .wav file in the default working directory
savewav(a,f=8000)
compress it to FLAC format and overwrite on the file a.wav
wav2flac("a.wav", overwrite=TRUE)
back to .wav format
wav2flac("a.flac", reverse=TRUE)
remove the files
unlink(c("a.wav","a.flac"))

End(Not run)

214 wav2leq

wav2leq Convert wave amplitude to equivalent continuous sound pressure level
(Leq)

Description

This function computes the Leq value of a time wave based on the properties of the recording chain,
if known.

Usage

wav2leq(wave, f, channel = 1, gain, dt = 1, sensitivity = -35, Vadc = 2, pref = 2 * 10^-5)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

gain total gain applied to the sound (preamplifer + amplifier), in dB.

dt integration time step, in s (by default 1 s).

sensitivity sensitivity of the microphone, in dB/V (by default - 35 dB/V).

Vadc maximal voltage (peak to peak) converted by the analog to digital convertor
ADC, in V (by default 2 V).

pref sound pressure reference in the medium, in Pa (by default = 2*10^-5 Pa in air).

Value

A numeric vector of length 1 returning the Leq value, in dB.

Note

This function can be used to turn a recorder, as a Songmeter or an Audiomoth, in a kind of
soundlevel meter.

Author(s)

Sylvain Haupert

See Also

wav2dBSPL

wf 215

Examples

data(tico)
with a 1 s time of integration (that is for the first time window)
wav2leq(tico, gain=18)
with a 0.5 s time of integration (that is for 3 successive time windows)
wav2leq(tico, dt=0.5, gain=18)
for the complete sound
wav2leq(tico, dt=duration(tico), gain=18)
which is equivalent to
meandB(wav2dBSPL(tico, gain=18))

wf Waterfall display

Description

This function returns a waterfall display of a short-term Fourier transform or of any matrix.

Usage

wf(wave, f, channel = 1, wl = 512, zp = 0, ovlp = 0, fftw= FALSE, dB = "max0",
dBref = NULL, wn = "hanning", x = NULL,
hoff = 1, voff = 1, col = heat.colors,
xlab = "Frequency (kHz)", ylab = "Amplitude (dB)",
xaxis = TRUE, yaxis = TRUE,
density = NULL, border = NULL, lines = FALSE, lwd=NULL, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl window length for the analysis (even number of points). (by default = 512)

zp zero-padding (even number of points), see Details.

ovlp overlap between two successive windows (in %).

fftw if TRUE calls the function FFT of the library fftw. See Notes of the spectro.

dB a character string specifying the type dB to return: "max0" for a maximum dB
value at 0, "A", "B", "C", "D", and "ITU" for common dB weights.

dBref a dB reference value when dB is TRUE. NULL by default but should be set to
2*10e-5 for a 20 microPa reference.

wn window name, see ftwindow (by default "hanning").

x a matrix if wave is not provided.

216 wf

hoff horizontal ’offset’ which shifts actual x-values slightly per row for visibility.
Fractional parts will be removed.

voff vertical ’offset’ which separates traces.

col a color or a color palette function to be used to assign colors in the plot

xlab title of the frequency x-axis.

ylab title of the amplitude y-axis.

xaxis a logical, if TRUE adds the frequency x-axis according to f.

yaxis a logical, if TRUE adds the amplitude y-axis according.

density argument of polygon: the density of shading lines, in lines per inch. The default
value of ’NULL’ means that no shading lines are drawn. A zero value of ’den-
sity’ means no shading nor filling whereas negative values (and ’NA’) suppress
shading (and so allow color filling).

border argument of polygon: the color to draw the border. The default, ’NULL’, means
to use ’par("fg")’. Use ’border = NA’ to omit borders.

lines a logical, if TRUE plots lines instead of surfaces (polygons).

lwd line width.

... other graphical arguments to passed to plot

Details

Data input can be either a time wave (wave) or a matrix (x). In that case, if xaxis is set to TRUE the
x-axis will follow the row index. To change it, turn xaxis to FALSE and use axis afterwards. See
examples.

Note

The function is well adapted to display short-term Fourier transform. However, any matrix can be
called using the argument x instead of wave.

Author(s)

Carl G. Witthoft and Jerome Sueur <sueur@mnhn.fr>

See Also

spectro, spectro3D, dynspec

Examples

data(tico)
wf(tico,f=22050)
changing the display parameters
jet.colors <- colorRampPalette(c("blue", "green"))
wf(tico,f=22050, hoff=0, voff=2, col=jet.colors, border = NA)
matrix input instead of a time wave and transparent lines display
m <- numeric()
for(i in seq(-pi,pi,len=40)) {m <- cbind(m,10*(sin(seq(0,2*pi,len=100)+i)))}

write.audacity 217

wf(x=m, lines=TRUE, col="#0000FF50",xlab="Time", ylab="Amplitude",
main="waterfall display")

write.audacity Audacity audio markers export

Description

Write audio markers to be imported by Audacity.

Usage

write.audacity(x, filename)

Arguments

x a data frame with the three or five colums, see details.

filename name of the .txt file. (by default the name of x).

Details

The input x object should be a data frame with two or three columns depending on whether the
markers include frequency limits or not :

• time limits only:

1. text label of each marker,
2. time marker of the beginning of each marker,
3. time marker of the end of each marker.

• time and frequency limits:

1. text label of each marker,
2. time marker of the beginning of each marker,
3. time marker of the end of each marker,
4. lower frequency limit of each marker,
5. higher frequency limit of each marker.

Value

A .txt file is generated to be imported as a markers in Audacity.

Note

Naming the columns of x is not necessary.

Author(s)

Jerome Sueur

218 zapsilw

References

Audacity is a free software distributed under the terms of the GNU General Public License.
Web site: https://www.audacityteam.org/

See Also

read.audacity

Examples

3 markers, time only
t1 <- c(9.2, 16.2, 24.4)
t2 <- c(11.7, 18.7, 26.9)
label <- c("a", "b", "c")
df <- data.frame(label, t1, t2)
write.audacity(df, filename="test-time.txt")
3 markers, time and frequency
t1 <- c(9.4, 15.2, 24.9)
t2 <- c(10.54, 16.6, 26.1)
f1 <- c(1703.4, 3406.8, 1608.8)
f2 <- c(7476.2, 8517.2, 5110.3)
label <- c("a", "b", "c")
dff <- data.frame(label, t1, t2, f1, f2)
write.audacity(dff, filename="test-time-frequency.txt")
delete files
unlink(c("test-time.txt", "test-time-frequency.txt"))

zapsilw Zap silence periods of a time wave

Description

This function simply deletes the silence periods of a time wave.

Usage

zapsilw(wave, f, channel = 1, threshold = 5, plot = TRUE, output = "matrix", ...)

Arguments

wave an R object.
f sampling frequency of wave (in Hz). Does not need to be specified if embedded

in wave.
channel channel of the R object, by default left channel (1).
threshold amplitude threshold (in %) between silence and signal.
plot logical, if TRUE plots the orginal and the new oscillograms (by default TRUE).
output character string, the class of the object to return, either "matrix", "Wave",

"Sample", "audioSample" or "ts".
... other oscillo graphical parameters.

https://www.audacityteam.org/

zc 219

Value

If plot is FALSE, a new wave is returned. The class of the returned object is set with the argument
output.

Note

Use the argument threshold to set the level of silence. See the examples.

Author(s)

Jerome Sueur

See Also

afilter, oscillo

Examples

data(orni)
zapsilw(orni,f=22050,colwave="red")
setting the threshold value
zapsilw(orni,f=22050,threshold=1)

zc Instantaneous frequency of a time wave by zero-crossing

Description

This function measures the period of a full oscillating cycle.

Usage

zc(wave, f, channel = 1, plot = TRUE, interpol = 1, threshold = NULL,
xlab = "Time (s)", ylab = "Frequency (kHz)", ylim = c(0, f/2000),
warning = TRUE, ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

plot logical, if TRUE plots the dominant frequency along the time wave(by default
TRUE).

interpol a numeric vector of length 1, interpolation factor.

threshold amplitude threshold for signal detection (in %).

220 zc

xlab title of the x axis.

ylab title of the y axis.

ylim the range of y values.

warning a logial to specify if warning message should be displayed or not when interpol
is > 100.

... other plot graphical parameters.

Details

If plot is FALSE, zc returns a vector of numeric data with the instantaneous frequency.

Value

If plot is FALSE, zc returns a two-column matrix, the first column corresponding to time in seconds
(x-axis) and the second column corresponding to the instantaneous frequency of the time wave in
kHz (y-axis).
‘NA’s correspond either to pause periods (e. g. detected applying threshold) or sections of the time
wave not crossing the zero line. To remove ‘NA’s with na.omit allows to get only instantaneous
frequency values but discards information about pause sections.

Note

interpol adds points to the time wave by linear interpolation (through approx). This increases
measurement precision but as well time process. Type argument of plot cannot be set to “l”.

Author(s)

Jerome Sueur <sueur@mnhn.fr>, Caroline Simonis and Thierry Aubin

References

Hopp, S. L., Owren, M. J. and Evans, C. S. (Eds) 1998. Animal acoustic communication. Springer,
Berlin, Heidelberg.

See Also

zc, ifreq

Examples

data(pellucens)
pellu1 <- cutw(pellucens,f=22050,from=0,to=1,plot=FALSE)
without interpolation
zc(pellu1,f=22050,threshold=5,pch=20)
with interpolation
zc(pellu1,f=22050,threshold=5,interpol=20,pch=20)
a way to plot with a line and to filter low frequencies
pellu2 <- zc(pellu1,f=22050,threshold=5,interpol=20,plot=FALSE)
pellu3 <- na.omit(pellu2[,2])
pellu4 <- pellu3[pellu3>3]

zcr 221

plot(x=seq(0,nrow(pellu1)/22050,length.out=length(pellu4)),
y=pellu4,type="l",xlab="Time(s)",ylab="Frequency(kHz)")

zcr Zero-crossing rate

Description

This functions computes the zero-crossing rate of a time function, i. e. the average number the sign
of a time wave changes.

Usage

zcr(wave, f, channel = 1, wl = 512, ovlp = 0, plot = TRUE, type = "o", xlab =
"Time (s)", ylab = "Zero crossing rate", ...)

Arguments

wave an R object.

f sampling frequency of wave (in Hz). Does not need to be specified if embedded
in wave.

channel channel of the R object, by default left channel (1).

wl length of the window for the analysis (even number of points, by default = 512).
If NULL the zero-crossing rate is computed of the complete signal.

ovlp overlap between two successive analysis windows (in %) if wl is not NULL.

plot a logical, if TRUE plots a the zero-crossing rate results along time.

type if plot is TRUE, type of plot that should be drawn. See plot for details (by
default "l" for lines).

xlab if plot is TRUE, label of the x axis.

ylab if plot is TRUE, label of the y axis.

... other plot graphical parameters.

Details

The zero-crossing rate is computed according to:

zcr =
1

2×N

N−1∑
t=0

|sgn[x(t+ 1)]− sgn[x(t)]|

with:
N the length of the signal x
and where:

sgn[x(t)] = 1

if
x(t) ≥ 0

222 zcr

and
sgn[x(t)] = −1

if
x(t) < 0

Value

The are two possibilities:

1. a numeric vector of length 1 if wl is NULL,

2. a numeric two-column matrix is returned with the first columnn being time (s) and the second
colum being the zero-crossing rate (no scale) if wl is not NULL.

Note

The are two possibilities:

1. if wl is NULL then the zero-crossing rate is computed for the complete signal.

2. if wl is not NULL the the zero-crossing rate is computed for for a window sliding along the time
wave.

The ZCR is supposed to help in detection of voiced/unvoiced sound sections.

Author(s)

Jerome Sueur

References

https://en.wikipedia.org/wiki/Zero-crossing_rate

See Also

zc

Examples

data(tico)
a single value for the complete signal, no plot
zcr(tico, wl=NULL)
a series of values computed for a sliding window of 512 samples, plot
zcr(tico)

https://en.wikipedia.org/wiki/Zero-crossing_rate

Index

∗ IO
export, 73
ftwindow, 87
savewav, 155
sox, 178
wav2flac, 212

∗ datagen
drawenv, 60
echo, 70
noisew, 123
pulsew, 141
setenv, 163
synth, 196
synth2, 199

∗ datasets
orni, 126
peewit, 135
pellucens, 135
sheep, 168
tico, 204

∗ data
attenuation, 16
audiomoth, 17
audiomoth.rename, 19
read.audacity, 144
songmeter, 172
songmeterdiag, 174
write.audacity, 217

∗ distribution
diffcumspec, 51
itakura.dist, 100
kl.dist, 101
ks.dist, 102
logspec.dist, 108

∗ dplot
ama, 13
autoc, 20
ccoh, 23
ceps, 26

cepstro, 28
coh, 30
corenv, 34
corspec, 36
covspectro, 38
cutw, 44
dBscale, 45
deletew, 48
dfreq, 50
diffenv, 53
diffspec, 55
dynoscillo, 64
dynspec, 65
dynspectro, 67
env, 71
fadew, 74
fbands, 75
fma, 83
fpeaks, 85
fund, 89
ggspectro, 92
ifreq, 96
localpeaks, 107
lts, 110
meanspec, 114
mutew, 121
oscillo, 127
oscilloEQ, 130
oscilloST, 131
pastew, 133
phaseplot, 136
phaseplot2, 137
Q, 142
repw, 145
resamp, 146
revw, 147
rmoffset, 151
seedata, 161
seewave, 162

223

224 INDEX

simspec, 169
soundscapespec, 176
spec, 179
specprop, 184
spectro, 186
spectro3D, 190
wf, 215
zc, 219

∗ filter
afilter, 10
bwfilter, 22
combfilter, 31
drawfilter, 61
ffilter, 79
fir, 82
preemphasis, 140
squarefilter, 193

∗ index
AR, 14
M, 112

∗ input
audiomoth, 17
audiomoth.rename, 19
read.audacity, 144
songmeter, 172
songmeterdiag, 174
wav2dBSPL, 211
wav2leq, 214
write.audacity, 217

∗ maths
notefreq, 124
octaves, 125

∗ math
convSPL, 33
dBweight, 47
fdoppler, 77
gammatone, 90
meandB, 113
mel, 116
melfilterbank, 118
micsens, 119
moredB, 120
sddB, 160
wasp, 209

∗ plot
scd, 158

∗ ts
ACI, 5

acoustat, 6
afilter, 10
akamatsu, 11
ama, 13
AR, 14
autoc, 20
beep, 21
bwfilter, 22
ccoh, 23
ceps, 26
cepstro, 28
coh, 30
combfilter, 31
corenv, 34
corspec, 36
covspectro, 38
crest, 40
csh, 41
cutspec, 43
cutw, 44
dBscale, 45
dBweight, 47
deletew, 48
dfreq, 50
diffcumspec, 51
diffenv, 53
diffspec, 55
diffwave, 57
discrets, 59
drawenv, 60
drawfilter, 61
duration, 63
dynoscillo, 64
dynspec, 65
dynspectro, 67
echo, 70
env, 71
fadew, 74
fbands, 75
ffilter, 79
field, 80
fir, 82
fma, 83
fpeaks, 85
ftwindow, 87
fund, 89
gammatone, 90
ggspectro, 92

INDEX 225

H, 94
hilbert, 95
ifreq, 96
istft, 98
itakura.dist, 100
kl.dist, 101
ks.dist, 102
lfs, 104
listen, 106
localpeaks, 107
logspec.dist, 108
lts, 110
M, 112
meanspec, 114
melfilterbank, 118
mutew, 121
NDSI, 122
noisew, 123
oscillo, 127
oscilloEQ, 130
oscilloST, 131
pastew, 133
phaseplot, 136
phaseplot2, 137
playlist, 139
preemphasis, 140
pulsew, 141
Q, 142
repw, 145
resamp, 146
revw, 147
rmam, 148
rmnoise, 150
rmoffset, 151
rms, 152
roughness, 153
rugo, 154
SAX, 156
scd, 158
seewave, 162
setenv, 163
sfm, 165
sh, 166
simspec, 169
smoothw, 171
soundscapespec, 176
spec, 179
specflux, 182

specprop, 184
spectro, 186
spectro3D, 190
squarefilter, 193
symba, 194
synth, 196
synth2, 199
TFSD, 200
th, 202
timelapse, 204
TKEO, 207
wf, 215
zapsilw, 218
zc, 219
zcr, 221

acf, 21
ACI, 5, 183, 202
acoustat, 6
addsilw, 9, 45, 49, 74, 122, 134, 146, 148
afilter, 10, 23, 80, 83, 141, 150, 219
akamatsu, 11
ama, 13, 84
approx, 220
AR, 14, 113
as.POSIXct, 18
attenuation, 16, 33
audiomoth, 17, 19, 111, 174
audiomoth.rename, 18, 19
autoc, 10, 20, 27, 30, 90
axis, 46, 216

barplot, 76, 177
beep, 21
bwfilter, 22, 23, 32, 80, 83, 141, 193

ccoh, 23, 31
ceps, 21, 26, 29, 30, 90
cepstro, 27, 28, 90
coh, 25, 30
combfilter, 31, 32, 62, 80, 141, 193
contour, 25, 29, 188, 189
convolve, 70, 82
convSPL, 17, 33, 48, 113, 120, 161
cor, 34–37, 39, 40
cor.test, 35, 37
corenv, 34, 40, 54
corspec, 35, 36, 37, 40, 56, 115, 143, 170, 181
covspectro, 35, 37, 38, 88

226 INDEX

crest, 40
csh, 10, 41, 95, 165, 167, 203
cutspec, 43
cutw, 9, 44, 49, 74, 122, 129, 134, 146, 207

dBscale, 45, 189
dBweight, 33, 47, 113, 120, 161
deletew, 9, 45, 48, 74, 122, 134, 146, 148
dfreq, 10, 50, 88
diffcumspec, 51, 56, 104, 159, 160
diffenv, 53, 56, 58, 170
diffspec, 53, 54, 55, 58, 101, 102, 104, 109,

115, 170
diffwave, 54, 57
dir, 15
discrets, 59, 158, 194, 195
drawenv, 60, 62, 164
drawfilter, 32, 61, 193
duration, 63
dynoscillo, 64, 129, 133
dynspec, 64, 65, 69, 93, 115, 181, 189, 192,

216
dynspectro, 67, 67

echo, 70, 198, 200
env, 14, 15, 34, 35, 53, 54, 57, 61, 66–69, 71,

94, 112, 113, 164, 199, 202, 206–208
export, 73, 156

fadew, 9, 45, 49, 74, 122, 134, 146, 148
fbands, 75
fdoppler, 77
ffilter, 23, 32, 62, 79, 83, 99, 105, 141, 193
fft, 27, 51, 67, 69, 82, 99, 115, 143, 181, 189,

192
field, 80
filled.contour, 25, 46, 69, 189
filter, 172
fir, 32, 62, 80, 82, 131, 141, 172, 193
fma, 14, 83
fpeaks, 27, 85, 107, 108, 115, 181
ftwindow, 5, 7, 38, 42, 50, 65, 68, 79, 82, 87,

98, 105, 110, 114, 159, 177, 180,
182, 187, 191, 201, 215

fund, 27, 30, 89

gammatone, 90, 119
ggspectro, 92, 111, 189, 192

H, 94, 154, 155, 167, 203

hilbert, 72, 84, 95, 97, 98, 149
hist, 202

ifreq, 84, 96, 96, 199, 208, 220
image, 69, 110, 111
IQR, 185
istft, 79, 98, 105
itakura.dist, 53, 56, 100, 104, 109, 170

kernel, 34, 54, 57, 66, 68, 72, 94, 164, 206
kl.dist, 53, 56, 101, 101, 104, 109, 170
ks.dist, 53, 56, 101, 102, 102, 109, 170
ks.test, 103

lfs, 23, 80, 83, 99, 104, 141
listen, 21, 106, 139
localpeaks, 86, 107, 115, 181
locator, 25, 61, 189
log, 101
logspec.dist, 53, 56, 101, 102, 104, 108, 170
lts, 110, 189, 192

M, 15, 112
mean, 152, 154, 184
meandB, 113, 161
meanspec, 8, 13, 14, 36, 37, 43, 51, 52, 55, 56,

75, 76, 79, 82, 85, 86, 88, 91, 100,
101, 103, 107–109, 111, 114, 142,
143, 165, 166, 169, 170, 177, 181,
184

median, 185
mel, 116, 119
melfilterbank, 91, 117, 118
micsens, 119
Mod, 72
moredB, 17, 33, 48, 113, 120, 161
mutew, 9, 45, 49, 74, 121, 134, 146, 148

na.omit, 220
NDSI, 122, 123, 177, 202
noisew, 123, 141, 150, 198, 200
normalize, 156
notefreq, 124, 126

octaves, 125, 125
OlsonNames, 18
orni, 126
oscillo, 9–11, 25, 41, 44, 45, 49, 64, 67, 69,

70, 72, 74, 96, 121, 122, 127, 130,

INDEX 227

131, 133, 134, 145–149, 151, 164,
188, 189, 218, 219

oscilloEQ, 129, 130, 133
oscilloST, 64, 129, 131, 131

par, 128
paste, 157
pastew, 9, 45, 49, 74, 122, 129, 133, 146, 148,

205, 207
peewit, 135
pellucens, 135
phaseplot, 136, 138
phaseplot2, 137, 137
play, 106, 139
playlist, 139
plot, 7, 11, 13, 16, 20, 26, 30, 35, 36, 39, 42,

50, 52, 54–56, 64, 66, 75, 85, 89, 97,
103, 107, 115, 136, 138, 141, 142,
169, 175, 180, 183, 184, 194, 207,
208, 216, 220, 221

polygon, 216
preemphasis, 23, 80, 83, 140
pulse, 124, 198, 200
pulsew, 141

Q, 142
quantile, 185

read.audacity, 144, 218
repw, 134, 145
resamp, 146
revw, 9, 45, 49, 74, 122, 134, 146, 147
rmam, 148
rmnoise, 150
rmoffset, 151
rms, 40, 41, 152, 154, 155
rnorm, 124
roughness, 153, 155
round, 85
rugo, 154, 154
runif, 124

savewav, 155, 213
SAX, 123, 156, 177, 195
scd, 158
sd, 184
sddB, 113, 160
seedata, 161
seewave, 162

seewave-package (seewave), 162
setenv, 61, 163
sfm, 43, 165, 167, 185
sh, 42, 43, 94, 95, 154, 155, 165, 166, 185, 203
sheep, 168
simspec, 53, 56, 101, 102, 104, 109, 115, 169
smooth.spline, 150
smoothw, 171
songmeter, 18, 19, 111, 172, 175
songmeterdiag, 174, 174
soundscapespec, 122, 123, 158, 176
sox, 178
spec, 36, 37, 43, 51, 52, 55, 56, 67, 69, 75, 76,

79, 82, 84–86, 88, 91, 100, 101, 103,
107–109, 115, 142, 143, 165, 166,
169, 170, 177, 179, 184

spec.pgram, 25, 31
specflux, 6, 182
specprop, 8, 184
spectro, 6, 25, 29, 31, 32, 40, 45, 46, 51, 67,

69, 79, 88, 92, 93, 99, 105, 111, 140,
180, 183, 186, 192, 196, 199, 216

spectro3D, 67, 69, 88, 93, 111, 189, 190, 216
squarefilter, 32, 62, 193
strptime, 174
symba, 60, 158, 194
synth, 61, 71, 124, 141, 164, 196
synth2, 198, 199, 200

TFSD, 200
th, 15, 42, 94, 95, 154, 155, 167, 202
tico, 204
timelapse, 134, 204
timer, 10, 129, 206
TKEO, 207
tkeo (TKEO), 207

wasp, 78, 209
wav2dBSPL, 211, 214
wav2flac, 212
wav2leq, 212, 214
Wave, 59, 156
wf, 67, 69, 189, 192, 215
write.audacity, 145, 217
write.table, 73
writeWave, 155, 156

zapsilw, 9, 45, 49, 74, 122, 134, 146, 218
zc, 10, 98, 219, 220, 222
zcr, 221

	ACI
	acoustat
	addsilw
	afilter
	akamatsu
	ama
	AR
	attenuation
	audiomoth
	audiomoth.rename
	autoc
	beep
	bwfilter
	ccoh
	ceps
	cepstro
	coh
	combfilter
	convSPL
	corenv
	corspec
	covspectro
	crest
	csh
	cutspec
	cutw
	dBscale
	dBweight
	deletew
	dfreq
	diffcumspec
	diffenv
	diffspec
	diffwave
	discrets
	drawenv
	drawfilter
	duration
	dynoscillo
	dynspec
	dynspectro
	echo
	env
	export
	fadew
	fbands
	fdoppler
	ffilter
	field
	fir
	fma
	fpeaks
	ftwindow
	fund
	gammatone
	ggspectro
	H
	hilbert
	ifreq
	istft
	itakura.dist
	kl.dist
	ks.dist
	lfs
	listen
	localpeaks
	logspec.dist
	lts
	M
	meandB
	meanspec
	mel
	melfilterbank
	micsens
	moredB
	mutew
	NDSI
	noisew
	notefreq
	octaves
	orni
	oscillo
	oscilloEQ
	oscilloST
	pastew
	peewit
	pellucens
	phaseplot
	phaseplot2
	playlist
	preemphasis
	pulsew
	Q
	read.audacity
	repw
	resamp
	revw
	rmam
	rmnoise
	rmoffset
	rms
	roughness
	rugo
	savewav
	SAX
	scd
	sddB
	seedata
	seewave
	setenv
	sfm
	sh
	sheep
	simspec
	smoothw
	songmeter
	songmeterdiag
	soundscapespec
	sox
	spec
	specflux
	specprop
	spectro
	spectro3D
	squarefilter
	symba
	synth
	synth2
	TFSD
	th
	tico
	timelapse
	timer
	TKEO
	wasp
	wav2dBSPL
	wav2flac
	wav2leq
	wf
	write.audacity
	zapsilw
	zc
	zcr
	Index

