
I/O of sound with R

Jérôme Sueur

Muséum national d'Histoire naturelle

CNRS UMR 7205 ISYEB, Paris, France

September 17, 2024

This document shortly details how to import and export sound with Rusing the packages seewave,
tuneR and audio1.

Contents

1 In 2

1.1 Non speci�c classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Speci�c sound classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Wave class (package tuneR) . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 audioSample class (package audio) . . . . . . . . . . . . . . . . . . . . . . 5

2 Out 5

2.1 .txt format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 .wav format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 .�ac format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Mono and stereo 6

4 Play sound 7

4.1 Speci�c functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.1 Wave class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 audioSample class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.3 Other classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 System command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Summary 8

1The package sound is no more maintained.

1



Import and export of sound with R

> options(warn=-1)

1 In

The main functions of seewave (>1.5.0) can use di�erent classes of objects to analyse sound:

� usual classes (numeric vector, numeric matrix),

� time series classes (ts, mts),

� sound-speci�c classes (Wave and audioSample).

1.1 Non speci�c classes

1.1.1 Vector

Any muneric vector can be treated as a sound if a sampling frequency is provided in the f

argument of seewave functions. For instance, a 440 Hz sine sound (A note) sampled at 8000 Hz
during one second can be generated and plot following:

> s1<-sin(2*pi*440*seq(0,1,length.out=8000))
> is.vector(s1)

[1] TRUE

> mode(s1)

[1] "numeric"

> library(seewave)
> oscillo(s1,f=8000)

1.1.2 Matrix

Any single column matrix can be read but the sampling frequency has to be speci�ed in the
seewave functions.
> s2<-as.matrix(s1)
> is.matrix(s2)

[1] TRUE

> dim(s2)

[1] 8000 1

> oscillo(s2,f=8000)

If the matrix has more than one column, then the �rst column only will be considered.

> x<-rnorm(8000)
> s3<-cbind(s2,x)
> is.matrix(s3)

[1] TRUE

> dim(s3)

[1] 8000 2

> oscillo(s3,f=8000)

J. Sueur 2 September 17, 2024



Import and export of sound with R

1.2 Time series

The class ts and the related functions ts, as.ts, is.ts can be used also for sound. Here follows
the command to similarly generate a time series corresponding to a 440 Hz sine sound sampled
at 8000 Hz during one second:

> s4<-ts(data=s1, start=0, frequency=8000)
> str(s4)

Time-Series [1:8000] from 0 to 1: 0 0.339 0.637 0.861 0.982 ...

To generate a 0.5 second random noise:

> s4<-ts(data=runif(4000), start=0, end=0.5, frequency=8000)
> str(s4)

Time-Series [1:4001] from 0 to 0.5: 0.618 0.887 0.307 0.598 0.7 ...

The length of s4 is not 4000 but 4001. Data are actually recycled, s4[4001] being the same as
s4[1].
The functions frequency and or deltat return the sampling frequency (f) and the time resolu-
tion (∆t) respectively:

> frequency(s4)

[1] 8000

> deltat(s4)

[1] 0.000125

As the frequency is embedded in ts objects, there is no need to specify it when using see-

wave functions:

> oscillo(s4)

In the case of multiple time series, seewave functions will consider the �rst series only:

> s5<-ts(data=s3,f=8000)
> class(s5)

[1] "mts" "ts" "matrix" "array"

> oscillo(s5)

1.3 Speci�c sound classes

There are three object classes corresponding to the binary wav format or to the compressed mp3

format:

� the class Wave of the package tuneR,

� the class audioSample of the package audio

J. Sueur 3 September 17, 2024



Import and export of sound with R

1.3.1 Wave class (package tuneR)

The class Wave comes with the package tuneRmanaged by Uwe Ligges. This S4 class includes
di�erent slots with the data (left or right channel), the sampling frequency (or rate), the number
of bits (8 /16 /24 /32) and the type of sound (mono /stereo). High sampled sound (i.e. > 44100
Hz) can be read.
The function to import .wav �les from the hard-disk is readWave:

> s6<-readWave("mysong.wav")

The other advantage of using readWave is for reading part of long �les. It is indeed possible to
import only a section of the .wav �le using the arguments from and to and by specifying the time
units with the arguments units. The units can be turned to "samples", "minutes" or "hours".
For instance, to read only the section starting at 1s and ending at 5s of the �le "mysong.wav" :

> s7<-readWave("mysong.wav", from = 1, to = 5, units = "seconds")
> s7

Wave Object
Number of Samples: 32000
Duration (seconds): 4
Samplingrate (Hertz): 8000
Channels (Mono/Stereo): Mono
PCM (integer format): TRUE
Bit (8/16/24/32/64): 16

Note that .mp3 �les can be imported as a Wave object with the function readMP3.
To get information regarding the object (sampling frequency, number of bits, mono /stereo), it
is necessary to use the indexing of S4 object classes:

> s7@samp.rate

[1] 8000

> s7@bit

[1] 16

> s7@stereo

[1] FALSE

A property not apparent in these call is that readWave does not normalise the sound. Values
describing the sound will be included between ±2bit−1:

> range(s7@left)

[1] 0 0

J. Sueur 4 September 17, 2024



Import and export of sound with R

1.3.2 audioSample class (package audio)

The package audio, developed by Simon Urbanek, is another option to handle .wav �les. Sound
can be imported using the function load.wave. The class of the resulting object is audioSample
which is essentially a numeric vector (for mono) or numeric matrix with two rows (for stereo).
The sampling frequency and the resolution can be called as attributes :

library(audio)
s10<-load.wave("mysong.wav")

head(s10)

sample rate: 8000Hz, mono, 16-bits
[1] 0.0000000 0.7070923 0.9999695 0.7070923 0.0000000 -0.7071139

s10$rate

[1] 8000

s10$bits

[1] 16

The main advantage of the package audio is that sound can be directly acquired within an R

session. This is achieved by �rst preparing a vector of NA and then using the function record.
For instance, to get a mono sound of 5 seconds sampled at 16 kHz :

> s11 <- rep(NA_real_, 16000*5)
> record(s11, 16000, 1)

A recording session can be controled using three complementary functions : pause, rewind, and
resume (see 4.1.2). See the documentation of audio for details regarding the control of audio
drivers: http://www.rforge.net/audio/.

2 Out

2.1 .txt format

For a maximal compatibility with other sound softwares, it can be useful to save a sound as a
simple .txt �le. This can be done using the function export with the argument header=FALSE.
By default, the name of the object is used to name the .txt �le. The following commands will
write a �le "tico.txt" on the hard-disk.

> data(tico)
> export(tico, f=22050, header=FALSE)

For Windows users, the software Goldwave © can be helpful when handling long sound �les or
large number of �les. To export a sound as a .txt �le that can be directly read by Goldwave©,
the same function can be used but with the default argument header=TRUE. seewavewill auto-
matically add the header needed. Hereafter the name of the exported �le is changed using the
argument filename:

> export(tico, f=22050, filename="tico_Gold.txt")

Any header can be speci�ed for a connection with other softwares. For instance, if an external
software needs the header "f=sampling frequency; ch=left":

> export(tico, f=22050, filename="tico_ext.txt",
+ header="f=22050; ch=left")

J. Sueur 5 September 17, 2024

http://www.rforge.net/audio/
http://www.goldwave.com/
http://www.goldwave.com/


Import and export of sound with R

2.2 .wav format

tuneRand audiohave a function to write .wav �les: writeWave, and save.wave respectively.
Within seewave, the function savewav, which is based on writeWAve, can be used to save data
as .wav. By default, the name of the object will be used for the name of the .wav �le:

> savewav(tico, f=22050)

As seen before, if the object to be saved is of class ts or Wave, there is no need to specify the
argument f. Here we use the argument filename to change the name of the wav �le:

> ticofirst<-cutw(tico, f=22050, to=0.5, output="Wave")
> savewav(ticofirst, filename = "tico_firstnote.wav")

2.3 .�ac format

Free Lossless Audio Codec (FLAC) is a �le format by Josh Coalson for lossless audio data
compression. FLAC reduces bandwidth and storage requirements without sacri�cing the integrity
of the audio source. Audio sources encoded to FLAC are typically reduced in size 40 to 50 percent.
See the �ac webpage for details .
.flac format cannot be used as such with R. However, the function wav2flac allows to call
FLAC software directly from the console. FLAC has therefore to be installed on your OS. If you
have a .wav �le you wish to compress into .flac, call:

> wav2flac("tico_firstnote.wav", overwrite=TRUE)

To compress a .wav �le into .flac, the argument reverse has to be set to TRUE:

> wav2flac("tico_firstnote.flac", reverse=TRUE)

3 Mono and stereo

Wave class can handle stereo �les. There are some speci�c functions regarding mono/stereo type.
To generate a stereo sound, two mono sounds are �rst created using sine, a function that returns
a Wave object, and then combined using stereo:

> left<-sine(440)
> right<-sine(2000)
> s12<-stereo(left,right)
> s12

Wave Object
Number of Samples: 44100
Duration (seconds): 1
Samplingrate (Hertz): 44100
Channels (Mono/Stereo): Stereo
PCM (integer format): FALSE
Bit (8/16/24/32/64): 32

To go back to a mono �le taking the left channel only:

> s13<-mono(s12,"left")

The function channel do roughly the same as it extracts one or more channels. To get this time
the right channel:

> s14<-channel(s12,"right")

J. Sueur 6 September 17, 2024

http://flac.sourceforge.net/


Import and export of sound with R

And eventually, the S4 indexing can be used to do it "manually". In this particular case, the
returned object will be of class vector.

> s13<-s12@left
> is.vector(s13)

[1] TRUE

> s14<-s12@right
> is.vector(s14)

[1] TRUE

4 Play sound

4.1 Speci�c functions

4.1.1 Wave class

Wave objects can be played with play of tuneR:

> play(s6)

It may happen that the default players of the function play are not installed on the OS. Three
functions can help in setting the media player: findWavPlayer returns the most common sys-
tem commands on the OS, WavPlayer returns the command that is currently used by play,
setWavPlayer is used to de�ne the command to be used by play. For instance, if Audacious is
the player to use (Linux OS):

> setWavPlayer("audacious")

4.1.2 audioSample class

The package audio has similarly a function play but also have three useful functions to control
recording and playback:

� pause that stops audio recording or playback,

� rewind that rewinds audio recording or playback, i.e., makes the beginning of the source
(or target) object the current audio position,

� resume that resumes previously paused audio recording or playback.

4.1.3 Other classes

The package seewaveincludes listen a function based on play of tuneR but accepting all speci�c
and non-speci�c classes and with two arguments (from and to) to listen only a section of a sound
object:

> listen(s1, f=8000, from=0.3, to=7)
> listen(s13, from=0.3, to=4)

J. Sueur 7 September 17, 2024

http://audacious-media-player.org


Import and export of sound with R

4.2 System command

The call of an external sound player can also be achieved using directly system that allows
invoking directly the system command. For instance, to play a sound with Audacity (Linux OS):

> system("audacity mysong.wav")

To run a sound player with Windows is slightly more tricky as the complete path to the .exe �le
has to be speci�ed and paster has to be invoked to combine both program and �le names:

> system(paste('"C:/Program Files/GoldWave/GoldWave.exe"', 'mysong.wav'))

5 Summary

Here is a temptative of summary of main R functions used for sound input and output:

Input Output Mono/Stereo Play Object

tuneR readWave writeWave mono, stereo play Wave

audio load.wave, record save.wave mono, stereo play, pause, audioSample

resume, rewind
seewave � export, savewav � listen vector, matrix,

ts, mts, Wave,
audioSample

J. Sueur 8 September 17, 2024

http://audacity.sourceforge.net

	In
	Non specific classes
	Vector
	Matrix

	Time series
	Specific sound classes
	Wave class (package tuneR)
	audioSample class (package audio)


	Out
	.txt format
	.wav format
	.flac format

	Mono and stereo
	Play sound
	Specific functions
	Wave class
	audioSample class
	Other classes

	System command

	Summary

